NTE7483 Integrated Circuit TTL – 4-Bit Binary Full Adder with Fast Carry #### **Description:** The NTE7483 is a 4-bit binary full adder in a 16-Lead plastic DIP type package that performs the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. This device features full internal look-ahead across all four bits generating the carry term in ten nanoseconds (typ). This capability provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripply-carry implementation. The adder logic, including the carry, is implemented in its true form. End around carry can be accomplished without the need for logic or level inversion. #### Features: - Full-Carry Look-Ahead Across the Four Bits - Systems Achieve Partial Look-Ahead Performance with the Economy of Ripple-Carry - The NTE74283 is Recommended for New Design as it Features Supply Voltage and GND on Corner Pins to Simplify Board Layout. #### Absolute Maximum Ratings: (Note 1) | Supply Voltage, V _{CC} 7 | V | |--|--------| | Input Voltage, V _{IN} 5.5 ^v | V | | Interemitter Voltage (Note 2) 5.5 | V | | Operating Temperature Range, T _A 0°C to +70°C | С | | Storage Temperature Range, T _{stg} 65°C to +150°C | \Box | Note 1. Unless otherwise specified, all voltages are referenced to GND. Note 2. This is the voltage between two emitters of a multiple-emitter transistor. This rating applies between the following pairs: A1 and B1, A and B2, A3 and B3, A4 and B4. ## **Recommended Operating Conditions:** | Parameter | Symbol | Min | Тур | Max | Unit | |--|-----------------|------|-----|------|------| | Supply Voltage | V _{CC} | 4.75 | 5.0 | 5.25 | V | | High-Level Output Current Any Output Except C4 | I _{OH} | _ | _ | -800 | μΑ | | Output C4 | | _ | _ | -400 | μΑ | | Low-Level Output Current Any Output Except C4 | I _{OL} | _ | _ | 16 | mA | | Output C4 | | _ | _ | 8 | mA | | Operating Temperature Range | T _A | 0 | _ | +70 | °C | ## **Electrical Characteristics**: (Note 3, Note 4) | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |--|-----------------|---|-----|-----|------|------| | High Level Input Voltage | V_{IH} | | 2 | _ | - | V | | Low Level Input Voltage | V_{IL} | | - | _ | 0.8 | V | | Input Clamp Voltage | V_{IK} | $V_{CC} = MIN, I_I = -12mA$ | - | - | -1.5 | V | | High Level Output Voltage | V _{OH} | $V_{CC} = MIN$, $V_{IH} = 2V$, $V_{IL} = 0.8V$, $I_{OH} = MAX$ | 2.4 | 3.4 | _ | V | | Low Level Output Voltage | V _{OL} | $V_{CC} = MIN, V_{IH} = 2V, V_{IL} = 0.8V, I_{OL} = 4mA$ | - | 0.2 | 0.4 | V | | Input Current | ΙĮ | V _{CC} = MAX, V _I = 5.5V | _ | _ | 1 | mA | | High Level Input Current | I _{IH} | $V_{CC} = MAX, V_I = 2.4V$ | - | _ | 40 | μΑ | | Low Level Input Current | I _{IL} | $V_{CC} = MAX, V_I = 0.4V$ | - | _ | -1.6 | mΑ | | Short-Circuit Output Current
Any Output Except C4 | I _{OS} | V _{CC} = MAX, Note 5 | -18 | _ | -55 | mA | | Output C4 | | | -18 | _ | -70 | mΑ | | Supply Current All B Low, Other Inputs at 4.5V | I _{CC} | V _{CC} = MAX, Outputs Open | _ | 56 | _ | mA | | All Inputs at 4.5V | | | - | 66 | 110 | mΑ | - Note 3. .For conditions shown as MIN or MAX, use the appropriate value specified under "Recommended Operation Conditions". - Note 4. All typical values are at $V_{CC} = 5V$, $T_A = +25^{\circ}C$. Note 5. Not more than one output should be shorted at a time. ## **Switching Characteristics**: $(V_{CC} = 5V, R_L = 667\Omega, T_A = +25^{\circ}C)$ unless otherwise specified) | Parameter | Symbol | Test Conditions | Min | Тур | Max | Unit | |--|------------------|----------------------------------|-----|-----|-----|------| | Propagation Delay Time | t _{PLH} | $R_L = 400\Omega$, $C_L = 15pF$ | - | 14 | 21 | ns | | (From C0 Input to Any Σ Output) | t _{PHL} | | _ | 12 | 21 | ns | | Propagation Delay Time | t _{PLH} | | _ | 16 | 24 | ns | | (From A_i or B_i Input to Σ_i Output) | t _{PHL} | | _ | 16 | 24 | ns | | Output Enable Time | t _{PZH} | $R_L = 780\Omega, C_L = 15pF$ | _ | 9 | 14 | ns | | (From C0 Input to C4 Output) | t _{PZL} | | _ | 11 | 16 | ns | | Propagation Delay Time | t _{PLH} | | _ | 9 | 14 | ns | | (From A _i or B _i Input to C4 Output) | t _{PHL} | | _ | 11 | 16 | ns | ## **Function Table:** | | | | | Output | | | | | | |----------|----------|----------|----------|-------------|-----------------------|----------------|-------------|-----------------------|----------------| | | Inp | out | | When C0 = L | | When
C2 = L | When C0 = H | | When
C2 = H | | A1
A3 | B1
B3 | A2
A4 | B2
B4 | Z1 Z3 | Z 2 Z 4 | C2
C4 | Z1 Z3 | Z 2 Z 4 | C2
C4 | | L | L | L | L | L | L | L | Н | L | L | | Н | L | L | L | Н | L | L | L | Н | L | | L | Н | L | L | Н | L | L | L | Н | L | | Н | Н | L | L | L | Н | L | Н | Н | L | | L | L | Н | L | L | Н | L | Н | Н | L | | Н | L | Н | L | Н | Н | L | L | L | Н | | L | Н | Н | L | Н | Н | L | L | L | Н | | Н | I | Η | L | L | L | Н | I | L | Ι | | L | L | L | Η | L | Ι | L | I | Ι | L | | Н | L | L | Н | Н | Н | L | L | L | Н | | L | Η | L | Н | Н | Н | L | L | L | Н | | Н | Н | L | Н | L | L | Н | Н | L | Н | | L | L | Н | Н | L | L | Н | Н | L | Н | | Н | L | Н | Н | Н | L | Н | L | Н | Н | | L | Н | Н | Н | Н | L | Н | L | Н | Н | | Н | Η | Н | Н | L | Н | Н | Η | Н | Н | H = HIGH Level L = LOW Level NOTE: Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs Σ 1 and Σ 2 and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs Σ 3, Σ 4, and C4. # **Pin Connection Diagram**