Multi-Channel Modular Type High Performance Temperature Controller

NEW

Feature

[Common]

- Easy maintenance with separated body/base parts
- No communication and power supply for expansion modules required using module connectors: Up to 32 modules
- PC parameter setting via PC (USB cable and RS485 communication): Supports comprehensive device management program (DAQMaster)
- Communication converter, sold separately: SCM-US (USB/Serial converter), SCM-38I (RS232C/RS485 converter), SCM-US48I (USB/RS485 converter), SCM-WF48 (Wi-Fi/RS485-USB wireless communication converter), EXT-US (converter cable)

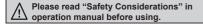
[TMH2/4 Series (control module)]

- One module supports multi channels (2 channels/4 channels) for input/output control: connecting TMH2/4, up to 32 modules (2 channels: 64 channels/4 channels: 128 channels)
- High-speed sampling with 50ms and ±0.3% measuring accuracy
- Simultaneous heating/cooling control and auto/manual control for high-performance control
- Selectable current output or SSR drive output
- Each channel insulated (dielectric strength 1,000VAC) XCT input terminal for measuring load current
 - (XCT, sold separately: CSTC-E80LN, CSTC-E200LN, CSTS-E80PP)
- Multi input/Multi range

[TMHA (analog input/output option module)]

- 4 channels, multi input/multi range/transmission output (DC0-20mA or 4-20mA)
- Each channel insulated (dielectric strength 1,000VAC)
- High-speed sampling with 50ms and ±0.3% measuring accuracy

[TMHE (digital input/alarm output option module)]


• Digital input (8 types)/Alarm output (8 types)

[TMHCT (CT input option module)]

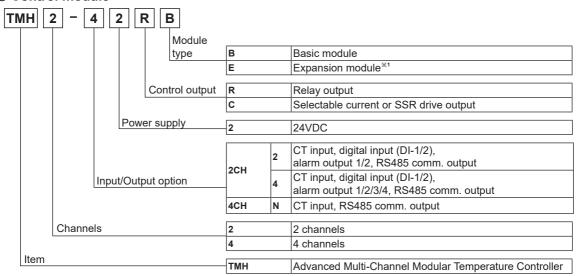
- 8 CT inputs
- CT input status indicators

[TMHC (communication module)]

- Connection expansion to master devices (PC, PLC, etc) with TMH2/4 (control module) and TMHA/E/CT (option module) (up to 16 modules)
- One module connects up to 32 control/option modules (16 control modules and 16 option modules)
- PLC ladderless (RS422/RS485), Ethernet communication supported

Manuals

- For the detail information and instructions, please refer to user manual and user manual for communication, and be sure to follow cautions written in the technical descriptions (catalog, homepage). Visit our homepage (www.autonics.com) to download manuals.
- User manual describes for specifications and function, and communication manual describes for RS485 communication (protocol Modbus RTU) and parameter address map data.



Ordering Information

O Control module

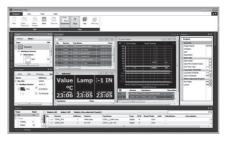
×1: Since the expansion module is not supplied with power/comm. terminal. Order it with the basic module.

Option module

Туре	Analog input/output	Digital input, alarm output	CT input
Model	TMHA-42AE	TMHE-82RE	TMHCT-82NE
Input	Temperature sensor/ Analog input 1 to 4	Digital input 1 to 8	CT input 1 to 8
Output	Transmission output (0/4-20mA) 1 to 4	Alarm output 1 to 8	_

O Communication module

Туре			PLC ladderless communication	Ethernet communication	
Model	Model		TMHC-22LE	TMH-22EE	
	100	Connection method	RS422, RS485	10BaseT	
Commu-	PLC)	Protocol	Modbus RTU, PLC ladderless comm.	Modbus/TCP	
nication	(Master,	Connection method	RS422, RS485	10BaseT	
		Protocol	Modbus RTU	Modbus/TCP	


■ Comprehensive Device Management Program (DAQMaster)

- DAQMaster is comprehensive device management program. It is available for parameter setting, monitoring.
- Visit our website (www.autonics.com) to download user manual and comprehensive device management program.

< Computer specification for using software >

Item	Minimum requirements
System	IBM PC compatible computer with Intel
,	Pentium III or above
Operating system	Microsoft Windows 98/NT/XP/Vista/7/8/10
Memory	256MB or more
Hard disk	More than 1GB of free hard disk space
VGA	1024×768 or higher resolution display
Others	RS-232 serial port (9-pin), USB port

< DAQMaster screen >

(A) Photoelectric Sensors

(B) Fiber Optic

> (C) Door/Area Sensors

> (D) Proximity Sensors

(E) Pressure

> (F) Rotary

(G) Connectors/ Connector Cables/ Sensor Distribution

(H) Temperature Controllers

(I) SSRs / Power Controllers

(1)

(M)

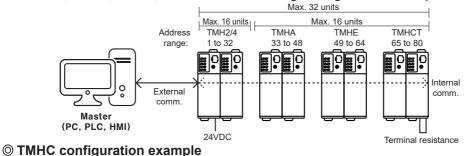
Tacho / Speed / Pulse Meters

(N) Display Units

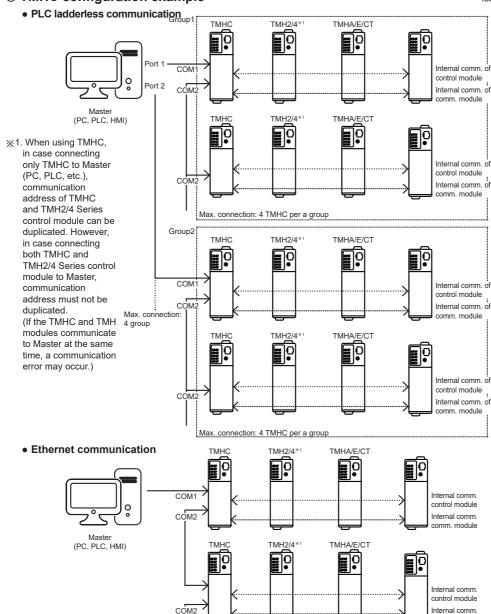
O) Sensor Controllers

(P) Switching Mode Power Supplies

(Q) Stepper Motors & Drivers


(R) Graphic/ Logic Panels

(S) Field Network


(T)

Connection Examples

© TMH2/4, TMHA, TMHE, TMHCT inter-working configuration example

- ※ Internal communication: Receive/Send data between TMH2/4 and TMHA/E/CT
- ※ External communication: Communicate with Master for controlling
- ※ Each module is available to monitoring at DAQMatser via PC loader

Max. connection: 16 TMHC comm. module

Specifications

© Control module

Series	noquie	TMH2	TMH4				
	olo	1					
No. of chann		2 channels	4 channels				
Power supply		-					
	oltage range	9	90 to 110% of rated voltage				
Power consu		Max. 5W (for max. load)	(BO BLO 1)				
Display meth		None- parameter setting and monitoring is available a					
	Thermocouple	K(CA), J(IC), E(CR), T(CC), B(PR), R(PR), S(PR), N(I	7. C 7. C 7. C 7.				
Input type	RTD	DPt100Ω, JPt100Ω, DPt50Ω, Cu100Ω, Cu50Ω, Nikel 120Ω 3-wire type (permissible line resistance max. 5Ω)					
Input type Analog		 Voltage: 0-100mVDC, 0-5VDC, 1-5VDC, 0-10VE Current: 0-20mA, 4-20mA 	JC				
Sampling cyc	cle	50ms (2CH or 4CH synchronous sampling)					
	Thermocouple*1	• At room temperature (23°C±5°C): (PV ±0.3% or ±1°C					
Measured	RTD	• Out of room temperature range: (PV ±0.5% or ±2°C,	5 , 5				
accuracy	Analog	• At room temperature (23°C±5°C): ±0.3% F.S. ±1-digi	t				
	, inclog	• Out of room temperature range: ±0.5% F.S. ±1-digit					
	CT input	0.0-50.0A (primary current measurement range) *CT	ratio=1/1000				
	·	Measured accuracy: ±5% F.S. ±1-digit					
Option input		 Connect input: ON - max. 1kΩ, OFF - min. 100kΩ Solid-state input: ON - max. residual voltage 0.9V, 					
	Digital input	OFF - max. leakage current 0.5mA	_				
		Outflow current : approx. 0.3mA per input					
Control	Heating, Cooling						
method	Heating&Cooling	ON/OFF control, P, PI, PD, PID control					
	Relay	250VAC~ 3A 1a					
Control	SSR	Max. 12VDC= ±3V 20mA					
output	Current	Selectable DC 4-20mA or DC 0-20mA (load resistance max. 500Ω)					
Option	Current	Selectable DC 4-2011A of DC 0-2011A (load resistance					
output	Alarm	250VAC∼ 3A 1a	<u> </u>				
Communi-	Comm. terminal	RS485 (Modbus RTU protocol)					
cation	PC loader	TTL (Modbus RTU protocol)					
Hysteresis		RTD/Thermocouples: 1 to 100°C/°F (0.1 to 100.0°C/°F					
Proportional		RTD/Thermocouples: 1 to 999°C/°F (0.1 to 999.9°C/°F), analog: 0.1 to 999.9 digit				
Integral time	.,	0 to 9999 sec					
Derivative tin		0 to 9999 sec					
Control perio		Relay output: 0.1 to 120.0 sec, SSR output: 1.0 to 120.0 sec					
Manual rese		0 to 100% (0.0 to 100.0%)					
Relay	Mechanical	Min. 10,000,000 operations					
life cycle	Electrical	Min. 100,000 operations (250VAC 3A resistance load)	·				
Memory rete	ntion	Approx. 10 years (non-volatile semiconductor memory	y type)				
Insulation res	sistance	100MΩ (at 500VDC megger)					
Insulation typ	oe e	Double insulation or reinforced insulation (mark: [iii], dielectric strength between the measuring input part and the power part: 1kV)					
Dielectric str	ength	1,000VAC 50/60Hz for 1 min (between input terminals and power terminals)					
Vibration		0.75mm amplitude at frequency of 5 to 55Hz (for 1 min) in each X, Y, Z direction for 2 hours					
Noise immunity		±0.5kV the square wave noise (pulse width: 1μs) by the noise simulator					
Environ- Ambient temp10 to 50°C, storage: -20 to 60°C							
ment	Ambient humi.	35 to 85%RH, storage: 35 to 85%RH					
Protection st		IP20 (IEC standard)					
Accessories		Expansion connector: 1, module lock connector: 2					
Approval		CE CAN US					
	Basic module	Approx. 250.8g (approx. 177.7g)	Approx. 250.4g (approx. 177.3g)				
Weight ^{*3}		Approx. 245.7(approx. 172.6g)	Approx. 245.1g(approx. 172.2g)				
		project module can year massurement assures about					

X1: Connecting 1 or more expansion module can vary measurement accuracy about ±1°C, regardless of the number of connected expansion module.

※2: ○At room temperature (23°C±5°C)

- Thermocouple K, J, N, E below -100°C, L, U, PLII and RTD Cu50Ω, DPt50Ω: (PV ±0.3% or ±2°C, higher one) ±1-digit
- Thermocouple C, G and R, S below 200°C: (PV ±0.3% or ±3°C, higher one) ±1-digit
- Thermocouple B below 400°C: there is no accuracy standards.

Out of room temperature range

- RTD Cu50Ω, DPt50Ω: (PV ±0.5% or ±3°C, higher one) ±1-digit
- Thermocouple R, S, B, C, G: (PV ±0.5% or ±5°C, higher one) ±1-digit
- Others blow -100°C: within ±5°C
- 3: The weight includes packaging. The weight in parenthesis is for unit only. Environment resistance is rated at no freezing or condensation.

(A) Photoelectric Sensors

(C) Door/Area Sensors

(D) Proximity Sensors

(I) SSRs / Power Controllers

(P) Switching Mode Power Supplies

(Q) Stepper Motors

(R) Graphic/ Logic Panels

Specifications

Option module

Model		TMHA-42AE			TMHE-82RE	TMHCT-82NE	
No. of	channels	4 channels			8 points	8 points	
Power	supply ^{*1}	24VDC					
Permiss	sible voltage range	90 to 110% of rated	voltage				
Power	consumption	Max. 5W (for max. lo	pad)				
Displa	y method	None- parameter se	tting and monitori	ng is available at e	external devices (PC, PLC, etc.))	
Input type		Thermocouple	RTD	Analog	Digital	СТ	
		K(CA), J(IC), E(CR), T(CC), B(PR), R(PR), S(PR), N(NN), C(TT), G(TT), L(IC), U(CC), Platinel II	DPt100 Ω , JPt100 Ω , DPt50 Ω , Cu100 Ω , Cu50 Ω , Nikel 120 Ω 3-wire type (permissible line resistance max. 5Ω per line)	Voltage: 0-100mVDC::, 0-5VDC::, 1-5VDC::, 0-10VDC:: Current: 0-20mA, 4-20mA	Connect input: ON - max. 1kΩ, OFF - min. 100kΩ Solid-state input: ON - max. residual voltage 0.9V, OFF - max. leakage current 0.5mA Outflow current: approx. 0.3mA per input	0.0-50.0A (primary current measurement range) %CT ratio=1/1000	
Sampl	ing cycle	50ms (4CH synchro	nous sampling)		_		
Measu accura		• At room temperatu (PV ±0.3% or ±1°C ±1-digit ^{*3} • Out of room tempe (PV ±0.5% or ±2°C ±1-digit	, higher one) rature range:	• At room temperature (23°C±5°C): ±0.3% F.S. ±1-digit • Out of room temperature range: ±0.5% F.S. ±1-digit		±5% F.S. ±1-digit	
	Alarm	_		<u> </u>	250VAC∼ 3A 1a	_	
Output	Transmission	DC 4-20mA or DC 0	-20mA				
		(load resistance max	c. 500Ω)				
Comm.	Comm. terminal	RS485 (Modbus RT	U protocol)				
	PC loader	TTL (Modbus RTU p	rotocol)		T.	1	
Relay	Mechanical				Min. 10,000,000 operations		
life cycle	Electrical	-			Min. 100,000 operations		
		A			(250VAC 3A resistance load)		
	ry retention	Approx. 10 years (no		nauctor memory t	ype)		
ınsula	tion resistance	- (tion (months 🖃 -li-li	atria atranath batusan 4		
	tion type	measuring input par	and the power p	art : 1kV)	ectric strength between the	_	
	tric strength				minal and input terminal)		
Vibrati					in each X, Y, Z direction for 2 h	ours	
	immunity	' '		tor (pulse width 1µ	s) ±0.5kV R-phase, S-phase		
Environ- Ambient temp.		-10 to 50°C, storage					
ment		35 to 85%RH, stora	ge: 35 to 85%RH		,		
	tion structure	IP20 (IEC standard)					
Acces	sories	Expansion connecto	r: 1, module lock	connector: 2			
Appro	val	C € c 93 us [©					
Weigh		Approx. 233.8g (app			Approx. 239g (approx. 165.9g)	Approx. 220.6g (approx. 147.5g)	
	. IA		on tarminal place	d in the beelreide a	of TMH2// Series (basic control	madula\	

- **1: Voltage of power supply/communication terminal placed in the backside of TMH2/4 Series (basic control module)
- **※3: At room temperature (23°C±5°C)**
 - Thermocouple K, J, N, E below -100°C, L, U, PLII and RTD Cu50Ω, DPt50Ω: (PV ±0.3% or ±2°C, higher one) ±1-digit
 - Thermocouple C, G and S below 200°C: (PV ±0.3% or ±3°C, higher one) ±1-digit
 - Thermocouple B below 400°C: there is no accuracy standards.
 - Out of room temperature range
 - RTD Cu50Ω, DPt50Ω: (PV ±0.5% or ±3°C, higher one) ±1-digit
 - Thermocouple R, S, B, C, G: (PV ±0.5% or ±5°C, higher one) ±1-digit
 - Others blow -100°C: within ±5°C
- X4: The weight includes packaging. The weight in parenthesis is for unit only.
- *Environment resistance is rated at no freezing or condensation.

Specifications

© Communication module

1112 2121			TMHC-22LE	TMHC-22EE			
Communication port		t	COM1/2				
Power s	upply ^{®1}		24VDC=				
Permissi	ible voltage	range	90 to 110% of rated voltage				
Power c	onsumption		Max. 5W (for max. load)				
Display i	method		None- parameter setting and monitoring is available at	external devices (PC, PLC, etc.)			
	COM1 (Master,	Connection method	RS485/RS422	10BaseT (Modbus/TCP)			
	PLC)	Protocol	Modbus RTU, PLC ladderless comm.				
Comm.	COM2 (Master,	Connection method	RS485/RS422	10BaseT (Modbus/TCP)			
	Group)	Protocol	Modbus RTU				
	PC loader		TTL (Modbus RTU protocol)				
Memory	retention		Approx. 10 years (non-volatile semiconductor memory type)				
Insulatio	n resistance	9	Over 100MΩ (500VDC megger)				
Insulatio	n type		Double insulation or reinforced insulation (mark: @, and the power part : 1kV)	dielectric strength between the measuring input part			
Dielectri	c strength		1,000VAC 50/60Hz for 1 min (between power source	e terminal and input terminal)			
Vibration	1		0.75mm amplitude at frequency of 5 to 55Hz (for 1 min) in	each X, Y, Z direction for 2 hours			
Noise im	munity		Square shaped noise by noise simulator (pulse width 1 μs) ±0.5kV R-phase, S-phase				
Environ	Ambient to	emp.	-10 to 50℃, storage: -20 to 60℃				
-ment	Ambient h	umi.	35 to 85%RH, storage: 35 to 85%RH				
Protection structure IP20(IEC standard)		IP20(IEC standard)					
Accessories			Expansion connector: 1, module lock connector: 2				
Approva			(€. 2.1/4 .3)				
Weight*	2		approx. 219g (approx. 147g)	approx. 200g (approx. 129g)			

 $[\]frakx$ 1: Voltage of power supply/communication terminal placed in the backside of TMH2/4 Series (basic control module)

(A) Photoelectric Sensors

(B) Fiber Optic

(C) Door/Area Sensors

(D) Proximity Sensors

(E) Pressure

(F) Rotary

(G) Connectors/ Connector Cables/ Sensor Distribution

(H) Temperature Controllers

(I) SSRs / Power Controllers

> (J) Counters

(K) Timers

(L) Panel Meters

(M) Tacho / Speed / Pulse Meters

> N) Display Jnits

O) Sensor Controllers

(P) Switching Mode Power Supplies

(Q) Stepper Motor & Drivers & Controllers

(R) Graphic/ Logic Panels

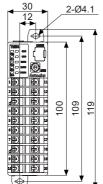
Field Network Devices

> T) Software

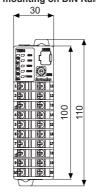
x2: The weight includes packaging. The weight in parenthesis is for unit only.

^{*}Environment resistance is rated at no freezing or condensation.

Error Display

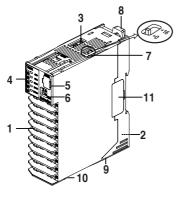

Status Indicator	Input error ^{*1}	Remote SV error ^{×2}
	ON (red)	ON (green)
CH ^{**3}	Flash (red)	Flash (red)

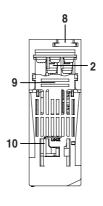
- X1: Input error: input value is below the input range (LLLL) / input value exceeds input range (HHHH) / input sensor wire is down or input sensor is disconnected (OPEN).
- X2: Remote SV error: communication error of Remote SV master and internal communication / input of master channel is
 LLLL/HHHH/OPEN when the channel is subjected to display PV.
- X3: An indicator of relative channel flashes.


After main cause of the error is solved, error status is cleared and the device is returned to the normal operation automatically


Dimensions

 Rail Lock position: mounting with bolts


 Rail Lock position: mounting on DIN Rail



Unit Description

© Control module

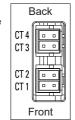
[Bottom]

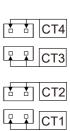
1. Input/Output terminal

For specific information about terminal formation, please refer to '

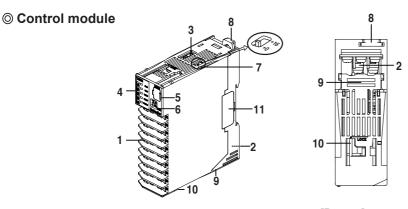
Connections and Isolated Block Diagram'.

2. Power/Comm. terminal [basic module only]


Supplies power to both basic control/expansion module and communicates with one or more module.


3. CT input terminal

When using the CT input terminal, remove the rubber cap and connect CT in the same direction with right image.


Connect CT with CICT4- (CT connector cable, sold separately).

※When connecting CT connector and CT input terminal, align the concave part (凹) and the convex part (凸).

(unit: mm)

4. Indicator •TMH2 Series

[Front/Side/Top]

[Bottom]

		Status	Initial	Control	Auto	Alarm output			
		_	power ON ^{*1}	output	tuning ^{*2}	N.O.(Normally	Open)	N.C. (Normally	(Closed)
Indicator			power ON	output	turning	OFF (OPEN)	ON (CLOSE)	OFF (CLOSE)	ON (OPEN)
		PWR (green)**3		ON	ON				
LED 1 LED 2		CH1 (red)	<u> </u>	ON	Flash				
PWR	LED 1	CH2 (red)		ON	Flash				
		(red)		ON ^{×4}	OFF				
CH1 AL1		(red)		ON ^{×5}	OFF				
CH 2 AL 2		(yellow)	Flash (4,800bps)	Module	comm. sta	atus ^{※6}			
		AL1 (yellow)	Flash (9,600bps)	—	—	OFF	ON	OFF	ON
AL3	LED 2	AL2 (yellow)	Flash (19,200bps)	—	—	OFF	ON	OFF	ON
		AL3 (yellow)	Flash (38,400bps)		_	OFF	ON	OFF	ON
		AL4 (yellow)	Flash (115,200bps)		_	OFF	ON	OFF	ON

TMH4 Series

Indicator			Initial power ON ^{*1}	Control output	Auto tuning ^{*2}
		PWR (green)**3		ON	ON
LED 1 LED 2		CH1 (red)		ON	Flash
PWR	LED 1	CH2 (red)		ON	Flash
		CH3 (red)		ON	Flash
CH1		CH4 (red)		ON	Flash
CH 2		(yellow)	Flash (4,800bps)	Module com	m. status ^{*6}
		(yellow)	Flash (9,600bps)		_
CH 3	LED 2	(yellow)	Flash (19,200bps)		_
CH 4		(yellow)	Flash (38,400bps)		_
		(yellow)	Flash (115,200bps)		

- X1: At the moment when power is on, the indicator of set communication speed flashes for 5 sec.
- X2: Indicator of the channel, which is in the process of auto-tuning, flashes at 1 sec interval.
- X3: When communicating with external device, PWR indicator flashes.
- X4: Turns on, when CH1 outputs cooling control in the heating&cooling control method.
- %5: Turns on, when CH2 outputs cooling control in the heating&cooling control method.
- %6: Displays communication status in control output, auto-tuning or operating RUN mode. ON: normal / flash: abnormal / OFF: not communicating
- **5. PC loader port:** PC loader port supports serial communication between single module and PC.
- It needs EXT-US (converter cable)+SCM-US (USB/Serial converter, sold separately) for communicating.

 6. Communication address setting switch (SW1): Set the communication address.
- 6. Communication address setting switch (SW1): Set the communication address.
 If changing the communication address by setting switch, use the flat head driver which is 2mm size or plastic driver. If not, it may cause product damage.
- 7. Communication address group switch (SW2): When setting the communication address over 16, select +16.
- 8. Rail lock: Rail lock helps installing the device to DIN rail or with bolts.
- 9. Lock lever: Lock lever holds module body and base tightly.
- 10. Module lock connecter hole: When connect modules, insert module lock connector in the hole in order to enhance coherence between modules.
- 11. END cover: When connect modules, remove END cover in order to connect expansion connector.

(A) Photoelectric Sensors

(B) Fiber Optic

> (C) Door/Area Sensors

(E)

(D) Proximity

(F)

(G) Connectors/

(H) Temperature Controllers

(I) SSRs / Power Controllers

(J) Counters

> K) imers

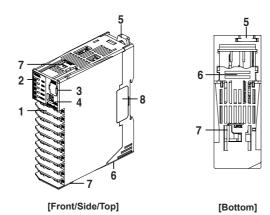
L) Panel Meters

(M) Tacho / Speed / Pulse

Display Units

Sensor Controllers

(P) Switching Mode Power Supplies


(Q) Stepper Motors & Drivers & Controllers

(R) Graphic/ Logic Panels

Field Network Devices

(T) Software

Option module

1. Input/Output terminal

For specific information about terminal formation, please refer to ' Connections and Isolated Block Diagram'.

2. Indicator

•TMHA [analog input/output module]

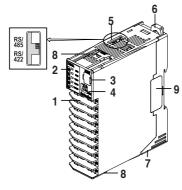
Indicator			' '	Internal comm.	Transmission output
		PWR (green)*2		ON	ON
LED 1 LED 2		CH1 (red)			ON
PWR	LED 1	CH2 (red)		_	ON
		CH3 (red)			ON
CH1		CH4 (red)			ON
CH ₂		(yellow)	Flash (4,800bps)	Module comm. status ^{*3}	
		(yellow)	Flash (9,600bps)	ON (CH1)	
CH3 CH4	LED 2	(yellow)	Flash (19,200bps)	ON (CH2)	
		(yellow)	Flash (38,400bps)	ON (CH3)	
		(yellow)	Flash (115,200bps)	ON (CH4)	_

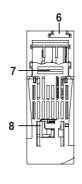
•TMHE [digital input, alarm output module]

		Status			Alarm output			
			316.4	Internal comm.	N.O.(Normal	y Open)	N.C. (Normally Closed)	
Indicator			Initial power ON	Internal comm.	OFF	ON	OFF	ON
Indicator					(OPEN)	(CLOSE)	(CLOSE)	(OPEN)
		PWR (green)*2		ON	ON			
LED 1 LED 2		CH1 (red)			OFF	ON	OFF	ON
PWR	LED 1	CH2 (red)			OFF	ON	OFF	ON
		CH3 (red)			OFF	ON	OFF	ON
AL1 AL5		CH4 (red)			OFF	ON	OFF	ON
AL2 AL6		(yellow)	Flash (4,800bps)	Module comm. status ^{*3}				
AL3 AL7		AL5 (yellow)	Flash (9,600bps)		OFF	ON	OFF	ON
ALS AL/	LED 2	AL6 (yellow)	Flash (19,200bps)		OFF	ON	OFF	ON
AL4 AL8		AL7 (yellow)	Flash (38,400bps)	_	OFF	ON	OFF	ON
		AL8 (yellow)	Flash (115,200bps)		OFF	ON	OFF	ON

•TMHCT [CT input module]

	-	-			
l		Status	Initial power ON ^{*1}	CT input ^{*3}	Internal
Indicator				·	comm.
		PWR (green) ^{*2}		ON	ON
LED 1 LED 2		(red)		ON (40.1 to 50.0A)	
PWR	LED 1	(red)		ON (30.1 to 40.0A)	
		(red)		ON (20.1 to 30.0A)	
		(red)		ON (10.1 to 20.0A)	
		(yellow)	Flash (4,800bps)	Module comm. statu	s ^{*3}
		(yellow)	Flash (9,600bps)	ON (40.1 to 50.0A)	
	LED 2	(yellow)	Flash (19,200bps)	ON (30.1 to 40.0A)	
		(yellow)	Flash (38,400bps)	ON (20.1 to 30.0A)	
		(yellow)	Flash (115,200bps)	ON (10.1 to 20.0A)	_


- %1: At the moment when power is on, the indicator
 of set communication speed flashes for 5 sec.
- X2: When communicating with external device, PWR indicator flashes.
- ※3: The indicator corresponding to the certain setting value of CT input flashes according to the parameter [CT Input Value Indication Lamp □].


LED 1: CT Input Value Indication Lamp 1 / LED 2: CT Input Value Indication Lamp2

- 3. PC loader port: PC loader port supports serial communication between single module and PC. It needs EXT-US (converter cable)+SCM-US (USB/Serial converter, sold separately) for communicating.
- 4. Communication address setting switch (SW1): Set the communication address.
 If changing the communication address by setting switch, use the flat head driver which is 2mm size or plastic driver. If not, it may cause product damage.
- 5. Rail lock: Rail lock helps installing the device to DIN rail or with bolts.
- 6. Lock lever: Lock lever holds module body and base tightly.
- 7. Module lock connecter hole: When connect modules, insert module lock connector in the hole in order to enhance coherence between modules.
- 8. END cover: When connect modules, remove END cover in order to connect expansion connector.

H-34 Autonics

© Communication module

[Front/Side/Top]

[Bottom]

1. Communication port

Communication ports are varied by model specification.

Please refer to ' Connections and Isolated Block Diagram' for more detail information.

2. Indicator

•TMHC-22LE [RS422/RS485 ladderless communication module]

Indicator		Status	Initial power ON*1	Internal comm.	Connection	PLC ladderless comm.
		PWR	Flash (4,800bps)	Flash (green)	-	Flash (red, Reading)
LED 1 LED 2	LED1	(red)	Flash (9,600bps)	Flash (TMH2/4)	-	_
		(red)	Flash (19,200bps)	Flash (TMHA)	-	_
PWR		(red)	Flash (38,400bps)	Flash (TMHE)	-	_
		(red)	Flash (115,200bps)	Flash (TMHCT)	-	-
		(yellow)	Flash (4,800bps)	_	ON	Flash (Sending)
ام ما		(yellow)	Flash (9,600bps)	_	ON (TMH2/4)	_
	LED2	(yellow)	Flash (19,200bps)	_	ON (TMHA)	_
		(yellow)	Flash (38,400bps)	-	ON (TMHE)	-
		(yellow)	Flash (115,200bps)	_	ON (TMHCT)	_

×1: At the moment when power is on, the indicator of set communication speed flashes for 5 sec.

•TMHC-22EE [Ethernet communication module]

Indicator	S	tatus	Initial power ON	Internal comm.	Connection		
		PWR(green)	ON	Flash (external device)	_		
		(red)	_	Flash (TMH2/4)	_		
LED 1 LED 2	LED1	(red)	_	Flash (TMHA)	_		
PWR		(red)	_	Flash (TMHE)	_		
		(red)	_	Flash (TMHCT)	_		
		(yellow)		ON	Flash (Ethernet		
		(yellow)		ON	comm.)		
	LED2	(yellow)		_	ON (TMH2/4)		
	LEDZ	(yellow)	Sequence-flashing	_	ON (TMHA)		
		(yellow)	vertically for 5 sec	_	ON (TMHE)		
		(yellow)		_	ON (TMHCT)		

- 3. PC loader port: PC loader port supports serial communication between single module and PC. It needs EXT-US (converter cable)+SCM-US (USB/Serial converter, sold separately) for communicating.
- 4. Communication address setting switch (SW1): Set the communication address.
 If changing the communication address by setting switch, use the flat head driver which is 2mm size or plastic driver. If not, it may cause product damage.
- 5. Communication mode switch (SW2): Select communication mode between RS485 and RS422. (TMHC-22LE only)
- 6. Rail lock: Rail lock helps installing the device to DIN rail or with bolts.
- 7. Lock lever: Lock lever holds module body and base tightly.
- 8. Module lock connecter hole: When connect modules, insert module lock connector in the hole in order to enhance coherence between modules.
- 9. END cover: When connect modules, remove END cover in order to connect expansion connector.

(A) Photoelectric Sensors

(B) Fiber Optic

(C) Door/Area Sensors

(D) Proximity Sensors

(E) Pressure Sensors

> (F) Rotary

(G) Connectors/ Connector Cables/ Sensor Distribution

(H) Temperature Controllers

(I) SSRs / Power Controllers

Counters

....

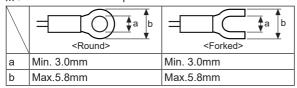
(M) Tacho /

(N) Display Units

> O) Sensor

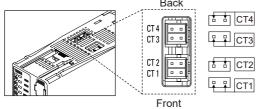
(P) Switching Mode Power Supplies

(Q) Stepper Motors & Drivers & Controllers

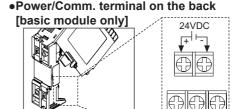

(R) Graphic/ Logic Panels

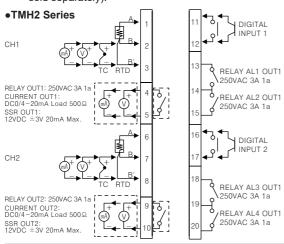
(S) Field Network

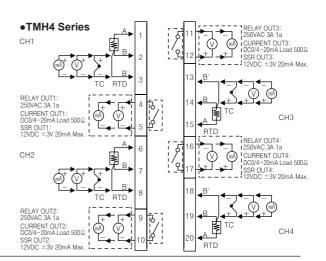
Γ)


■ Connections and Isolated Block Diagram

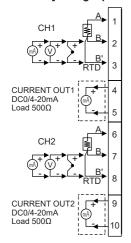
XUse terminals of size specified below.

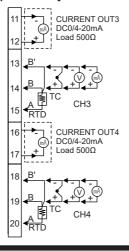



© Control module

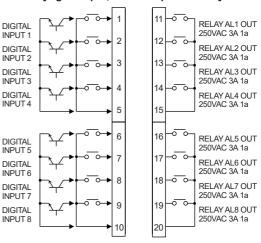

CT input terminal on the top

- When use the CT input terminals, remove the robber cap.
- XConnect CT with CICT4
 (CT connector cable, sold separately).

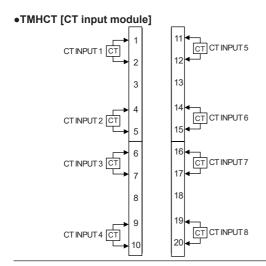




(A+) (B-)


Option module

•TMHA [analog input/output module]



•TMHE [digital input, alarm output module]

H-36 Autonics

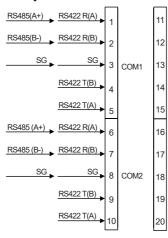
(A) Photoelectric Sensors

(C) Door/Area Sensors

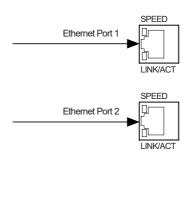
(D) Proximity Sensors

(G) Connectors/ Connector Cables/ Sensor Distribution Boxes/Sockets

(I) SSRs / Power Controllers


(P) Switching Mode Power Supplies

(Q) Stepper Motors


(R) Graphic/ Logic Panels

© Communication module

•TMHC-22LE [RS422/RS485 ladderless communication module]

•TMHC-22EE [Ethernet communication module]

Sold Separately

Communication converter

• SCM-WF48 (Wi-Fi to RS485-USB wireless communication converter)

(USB to Serial converter)

• SCM-US

C€ 🖫

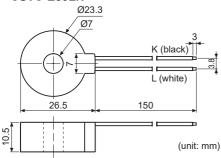
• SCM-US48I (USB to RS485 converter)

• EXT-US

(converter cable)

Autonics

• SCM-38I


CE C

(RS232C to RS485 converter)

Sold Separately

© Current transformer (CT)

• CSTC-E80LN

- F=50Hz

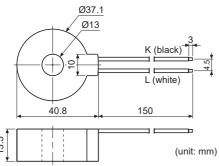
 N 2 1 100Ω

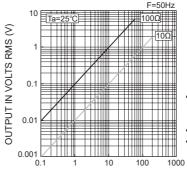
 1 100Ω

 1 100Ω

 1 100Ω

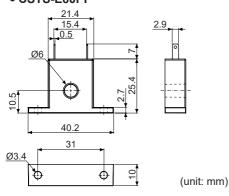
 0.01

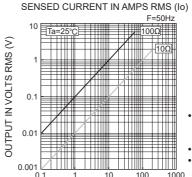

 0.001


 0.001

 0.001

 SENSED CURRENT IN AMPS RMS (io)
- Current ratio: 1/1000
- Wire wounded resistance: 31Ω±10%

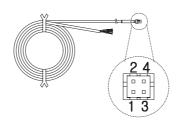

• CSTC-E200LN



- Current ratio: 1/1000
- Wire wounded resistance: 20Ω±10%

• CSTS-E80PP

SENSED CURRENT IN AMPS RMS (Io)

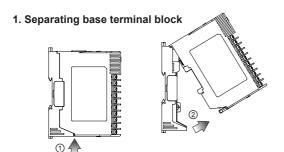

- Current ratio: 1/1000
- Wire wounded resistance 31Ω±10%

XDo not supply primary current in case that CT output is open. High voltage will be generated in CT output.

*The current for above CTs is 50A same but inner hole sizes are different. Please use this for your environment.

O CT connector cable

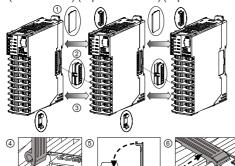
- CICT4-1 (cable length: 1m)
- CICT4-3 (cable length: 3m)



Pin number	Cable color	CT connection
1	Brown	CT1/3
2	Blue	CT1/3
3	White	CT2/4
4	Black	CT2/4

※When connecting CT connector and CT input terminal, align the concave part (凹) and the convex part (凸).

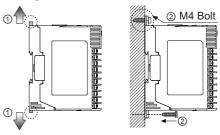
H-38 Autonics


Installation

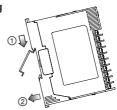
- ① Push the lock lever at the bottom of the module.
- 2 Pull the body of the module and open up.
- «When connecting base terminal block, align the upper concave part (△) of the body and the upper convex part (△) of the base. If the upper parts are not align correctly, it may damage to the inner connector.

2. Connection between modules

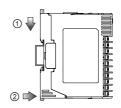
TMH--2-B TMH--2-E TMH--2-E (basic module) (expasion module) (expasion module)


- ①Remove END cover of each module (except END cover of the first and last module).
- ②Insert expansion connector.
- ③Put all together tightly (max. 31 units).
- (4) Insert module lock connector.
- © Push module lock connector and insert in lock connector hole of another module on the side.
- @Push module lock connector to the lock direction.
- XSupply adequate power for power input specifications and overall capacity.

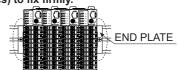
(Max. power when connecting 32 modules:32×5W=160W)


3. Mounting with bolts

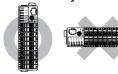
Pull the rail lock at the top and bottom of the module.
 Insert bolts and fix it on rail lock.
 (fixing torque is 0.5 to 0.9N·m.)


4. Mounting on DIN rail

4.4.1 Installing



- ①Hang the top rail lock to DIN rail.
- ②Push and press the module to down direction.


4.2 Removing

- ①Press the module down.
- ②Pull the module body forward.
- WUse end plates (sold separately, not available from Autonics) to fix firmly.

XInstall the module vertically.

(A) Photoelectric Sensors

(B) Fiber Optic

(C) Door/Area Sensors

(D) Proximity Sensors

(E) Pressure Sensors

(F) Rotary Encoders

(G)
Connectors/
Connector Cables/
Sensor Distribution

(H) Temperature Controllers

(I) SSRs / Power Controllers

(J)

(K) Timers

(L) Panel

(M) Tacho / Speed / Pulse

(N) Display Units

(O) Sensor

(P) Switching Mode Power Supplies

(Q) Stepper Motors & Drivers

(R) Graphic/ Logic Panels

(S) Field Network Devices

> (T) Software

■ Input Type and Range

Input type			Decimal point	Display	Temperature range(°C)	Temperature range(°F)		
	IX(CA)		1	K(CA).H	-200 to 1350	-328 to 2463		
Thermo-couple	K(CA)		0.1	K(CA).L	-200.0 to 1350.0	-328.0 to 2463.0		
	1/10)		1	J(IC).H	-200 to 800	-328 to 1472		
	J(IC)		0.1	J(IC).L	-200.0 to 800.0	-328.0 to 1472.0		
	F(OD)		Display Iemperature range(**C) Iemperature range To Iemperature To Iemperature range To Iemperature range To Iemperature To Iemperate To Iemperature To Iemperature To Iemperature	-328 to 1472				
Thermo- couple	E(CR)		0.1	E(CR).L	-200.0 to 800.0	-328.0 to 1472.0		
	T(CC)		1	T(CC).H	-200 to 1350			
	T(CC)		0.1	T(CC).L				
	B(PR)		1	B(PR)	0 to 1800	30 to 1350		
	R(PR)		1	R(PR)	0 to 1750			
couple	S(PR)		1	S(PR)	0 to 1750	32 to 3182		
	N(NN)		1	N(NN)	-200 to 1300	-328 to 2463 -328.0 to 2463.0 -328.0 to 2463.0 -328.0 to 1472 -0.0 -328.0 to 1472.0 -328 to 1472 -328 to 1472 -328 to 752 -328.0 to 752.0 -328.0 to 752.0 -328 to 3272 -32 to 3182 -32 to 3182 -32 to 3182 -32 to 4172 -328 to 1652 -328 to 1652 -328.0 to 1652.0 -328 to 752.0 -328 to 752 -328 to 752 -328 to 1652 -328.0 to 1652.0 -328.0 to 1652.0 -328.0 to 752.0 -328 to 752 -328 to 752 -328 to 752 -328 to 752 -328 to 1202 -328.0 to 1202.0		
Thermocouple R C C C C C C C C C C C C C C C C C C	C(TT)		1	C(TT)	0 to 2300	32 to 4172		
	G(TT)		1	G(TT)	0 to 2300	32 to 4172		
	1 (10)		1	L(IC).H	-200 to 900	-328 to 1652		
	L(IC)		0.1	L(IC).L	-200.0 to 900.0	-328.0 to 1652.0		
	LI(CC)		1	U(CC).H	-200 to 400	-328 to 752		
	U(CC)		0.1	U(CC).L	-200.0 to 400.0	-328.0 to 752.0		
	Platinel II		1	PLII	0 to 1390	32 to 2534		
K(0 J(1 K(0 J(1 K(0 K(0	Cu 50Ω		0.1	CU 50	-200.0 to 200.0	-200.0 to 392.0		
	Cu 100Ω		0.1	CU 100	-200.0 to 200.0	-200.0 to 392.0		
	JIS	JPt 100Ω	1	JPt100.H	-200 to 650	-328 to 1202		
DTD	standard	JPt 100Ω	0.1	JPt100.L	-200.0 to 650.0	-328 to 2463 -328 to 1472 -328 to 752 -328 to 3182 -328 to 3182 -32 to 4172 -328 to 2372 -328 to 1652 -328 to 1652 -328 to 1652 -328 to 1652 -328 to 752 -328 to 1652 -328 to 1202		
KID		DPt 50Ω	0.1	DPt50.L	-200.0 to 600.0			
	standard	DPt 100Ω	1	DPt100.H	-200 to 650			
	otandard	DPt 100Ω	0.1	DPt100.L	-200.0 to 650.0			
RTD	Nickel 12	0Ω	1	NI12	-80 to 200	-112 to 392		
		0 to 10V		AV1	0 to	1000		
	Voltage	0 to 5V		AV2	0 to	5000		
Analog	voltage	1 to 5V		AV3	1000	to 1350		
Allalog		0 to 100mV		AMV1	0 to			
	Current	0 to 20mA		AMA1	0 to			
	Current	4 to 20mA	_	AMA2	400 1	to 2000		

H-40 Autonics

Functions

1. Analog input special function TMH2/4 TMHA

In case of analog input, it displays the applied measured value of the set special function.

1) Linear

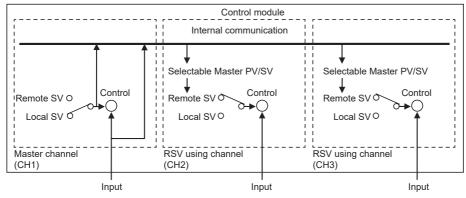
It applies low-limit scale and high-limit scale to low-limit input value and high-limit input value and displays this values.

E.g.) In case of input type: 0-10V, low-limit input value: 0V, high-limit input value: 10V, low-limit scale: 0, high-limit scale: 1000, present input value is 2V and the display value is 200.

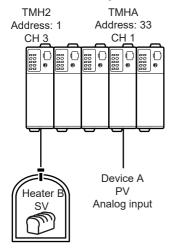
2) Root

In case of voltage, current (shunt) input, this mode is used when input value is calculated by Root($\sqrt{}$) for the desired display value. Differential pressure signal of differential pressure flow meter is calculated Root($\sqrt{}$) for the to-be measured flux. This function is used to measure flux by input value.

E.g.) In case of input type: 0-10V, low-limit input value: 0V, high-limit input value: 10V, low-limit scale: 0, high-limit scale: 1000, present input value is 2V and the display value is 447.


3) Square

In case of voltage, current (shunt) input, this mode is used when input value is calculated by square for the desired display value.


E.g.) In case of input type: 0-10V, low-limit input value: 0V, high-limit input value: 10V, low-limit scale: 0, high-limit scale: 1000, present input value is 2V and the display value is 40.

2. Remote SV TMH2/4

SV setting is available to set using PV or SV of the other module/channel not the direct setting of the module/channel. Set the other module's (RSV Master) address, channel, and the target value (PV or SV).

E.g.) RSV function is available when PV of TMHA (address 33, channel 1) is used for SV of TMH2(address 1, channel 3). Set RSV Master setting of TMH2. RSV Master address: 33, RSV Master channel: 1, RSV Master channel target: PV

(A) Photoelectric Sensors

(B) Fiber Optic

> (C) Door/Area Sensors

(D) Proximity Sensors

(E) Pressure

r) lotary incoders

Connectors/ Connector Cables/ Sensor Distribution Boxes/Sockets

(H) Temperature Controllers

(I) SSRs / Power Controllers

Counters

imers

(L) Panel Meters

(M) Tacho / Speed / Puls Meters

> N) isplay

(O) Sensor Controllers

(P) Switching Mode Power Supplies

(Q) Stepper Motors & Drivers & Controllers

(R) Graphic/ Logic Panels

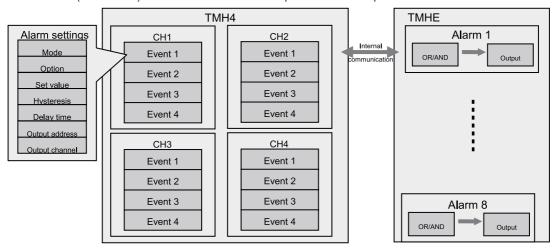
(S) Field Network Devices

(T) Software

3. Alarm TMH2/4 TMHE

Alarm output (Alarm) is output terminal and alarm (Event) is for alarm setting by each channel.

One channel is available to set total 4 alarms (Event 1 to 4).


One alarm consists of alarm mode, option, set value, hysteresis, delay time, output address, and channel settings, etc.

• Using TMHE Option module alarm output

TMH2/4 is connectable to TMHE option module. (according to address setting)

TMH4 does not have built-in alarm and TMHE option module outputs alarm when alarm condition occurs by internal communication.

Several alarm (Event 1 to 4) is selectable as one alarm output and AND/OR operation is selectable at TMHE.

4. CT input value indicators channel TMHCT

The indicator of TMHCT turns ON by the input value of CT.

Indicator		Status	CT input
		PWR (green)	ON
LED 1 LED 2		(red)	ON (40.1 to 50.0A)
	LED 1	(red)	ON (30.1 to 40.0A)
PWR		(red)	ON (20.1 to 30.0A)
		(red)	ON (10.1 to 20.0A)
		(yellow)	
		(yellow)	ON (40.1 to 50.0A)
	LED 2	(yellow)	ON (30.1 to 40.0A)
		(yellow)	ON (20.1 to 30.0A)
		(yellow)	ON (10.1 to 20.0A)

Set at LED 1: CT Input Value Indication Lamp1 / LED 2: CT Input Value Indication Lamp2 of TMHC.

5. User parameter group TMH2/4 TMHA TMHE TMHCT TMHC

At DAQMaster, user parameter group of each module, TMH2/4/A/E/CT/C, is available to set.

This function is able to set the frequently used parameters to the user parameter group, so you can quickly and easily set the parameter settings.

In addition, the parameters set to the user group are configured sequentially and consecutively in TMHC, so it can improve efficiency of communication to the master device via batch read/write process.

For more information, refer to the user manual for communication.

Visit our website (www.autonics.com) to download the DAQMaster program and the manuals.

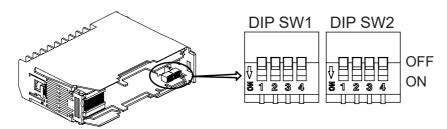
H-42 Autonics

Communication Setting

It is for parameter setting and monitoring via external devices (PC, PLC, etc.). In case of TMHC, set COM1/2 both.

O Interface

•				
	Connection nethod TMH2/4/TMHA/TMH TMHC TMH2/4 TMH2/4 TMH2/4 TMHA/TMHE/TMHC TMHC TMHC Synchronization type Communication method Communication effective range Communication speed Response time Start bit Data bit Parity bit	MHE/TMHCT/	Modbus RTU	7
Protocol	TMUC	-22LE	Modbus RTU, PLC ladderless comm.	1
	TIVING	-22EE	10BaseT (Modbus/TCP)	1
0	TMH2/4/TMHA/1	MHE/TMHCT/	RS485	1
	TMUC	-22LE	RS422, 485	1
metriod	TIVING	-22EE	10BaseT (Modbus/TCP)	1
	TMU2/4		32unit (address: 01 to 32)	1
Maximum	ΠΝΙΠΖ/4		(in case connecting TMHC module: 16 units (address: 01 to 16))	
connection	TMHA/TMHE/TN	ИНСТ	Each module 16 units	
	TMHC		16 control modules and 16 option modules per 1 TMHC module	1
Synchronization	n type		Asynchronous	1
Communication	n method		Two-wire half duplex	1
Communication	effective range		Max. 800m	1
Communication	speed		4800, 9600 (default), 19200, 38400, 115200 bps	1
Response time			5 to 99ms (default: 20ms)	7
Start bit			1-bit (fixed)]
Data bit			8-bit (fixed)]
Parity bit			None (default), Odd, Even	1
Stop bit			1bit, 2bit (default)	


After connecting Ethernet module (TMHC-22EE), can check Mac address in 'Property - Mac address' item. For more details as like method of module connection, refer to user manual for TMH.

**Mac address is the network address for Ethernet communication.

© DIP switch configuration [PLC ladderless comm. module: TMHC-22LE]

After separating base terminal block, set communication speed, stop bit, PLC connection and protocol by using a internal DIP switch. (Default: All switches OFF(configure via PC))

*When connecting PLC, apply setting value to COM1 only.

- SW1

1	2	Comm. speed
OFF	OFF	Comm. parameter setting
OFF	ON	19200bps
ON	OFF	38400bps
ON	ON	115200bps

3	4	Stop bit
OFF	OFF	Comm. parameter setting
OFF	ON	Stop bit: 1bit
ON	OFF	Stop bit: 2bit
ON	ON	_

- SW2

1	2	3	4	PLC connection and Protocol
OFF	OFF	OFF	OFF	Comm. parameter setting
OFF	OFF	OFF	ON	MODBUS(RTU) protocol
OFF	OFF	ON	OFF	LS MASTER-K Series special protocol
OFF	OFF	ON	ON	LS GLOFA-GM Series special protocol
OFF	ON	OFF	OFF	LS XGT/XGB Series special protocol
OFF	ON	OFF	ON	MITSUBISHI MELSEC Series special protocol
OFF	OIN	OFF	OFF Comm. parameter setting ON MODBUS(RTU) protocol OFF LS MASTER-K Series special ON LS GLOFA-GM Series special OFF LS XGT/XGB Series special ON MITSUBISHI MELSEC Serie Q/QnACPU common command OFF MITSUBISHI MELSEC Serie	Q/QnACPU common command (1401/0401)
OFF	ON	ON	OEE	MITSUBISHI MELSEC Series special protocol
OFF	OIN	OIN	OFF	ACPU common Command (WW/WR)
OFF	ON	ON	ON	OMRON SYSMAC Series special protocol

(A) Photoelectric Sensors

(B) Fiber Optic

(C) Door/Area Sensors

(D) Proximity Sensors

(E) Pressure Sensors

(F) Rotary

(G) Connectors/ Connector Cables/ Sensor Distribution

(H) Temperature Controllers

(I) SSRs / Power Controllers

> (J) Counters

> > K)

L) anel leters

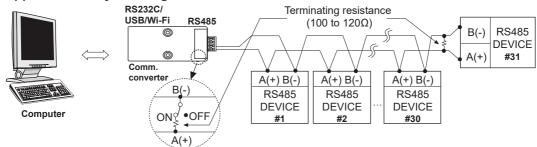
(M) Tacho / Speed / Puls

(N) Display Units

> O) Sensor Controllers

(P) Switching Mode Power Supplies

(Q) Stepper Motors & Drivers & Controllers


(R) Graphic/ Logic Panels

Field Network Devices

(T) Software

Communication Setting

O Application of system organization

XIt is recommended to use Autonics communication converter; SCM-WF48 (Wi-Fi to RS485·USB wireless communication converter, sold separately), SCM-US48I (USB to RS485 converter, sold separately), SCM-38I (RS232C to RS485 converter, sold separately).

Please use twisted pair wire, which is suitable for RS485 communication, for SCM-WF48, SCM-US48I and SCM-38I.

Occurrence Communication address setting

Set the communication address with the communication address setting switch (SW1). (default: [SW1] 1)

	SW									D							
Module		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
TMH4/2	+0 +16	16	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
	+0 +16	32	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
TMHC		16	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
TMHA		48	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
TMHE		64	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
TMHCT		80	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79

When using TMHC, in case connecting only TMHC to Master (PC, PLC, etc.), communication address of TMHC and TMH2/4 Series control module can be duplicated. However, in case connecting both TMHC and TMH2/4 Series control module to Master, communication address must not be duplicated. (If the TMHC and TMH modules communicate to Master at the same time, a communication error may occur.)

Caution for communication interface setting

When changing the setting value related to communication interface, reboot the device for normal operation.

H-44 Autonics

Proper Usage

© Cautions during use

- Follow instructions in 'Cautions during Use'. Otherwise, It may cause unexpected accidents.
- Check the polarity of the terminals before wiring the temperature sensor.

 For RTD temperature sensor, wire it as 3-wire type, using cables in same thickness and length.

 For thermocouple (CT) temperature sensor, use the designated compensation wire for extending wire.
- Keep away from high voltage lines or power lines to prevent inductive noise.
 In case installing power line and input signal line closely, use line filter or varistor at power line and shielded wire at input signal line.
 - Do not use near the equipment which generates strong magnetic force or high frequency noise.
- Do not apply excessive power when connecting or disconnecting the connectors of the product.
- Install a power switch or circuit breaker in the easily accessible place for supplying or disconnecting the power.
- Do not use the unit for other purpose (e.g. voltmeter, ammeter), but temperature controller.
- When changing the input sensor, turn off the power first before changing.
 After changing the input sensor, modify the value of the corresponding parameter.
- Power supply should be insulated and limited voltage/current or Class 2, SELV power supply device.
- Do not overlapping communication line and power line.
 Use twisted pair wire for communication line and connect ferrite bead at each end of line to reduce the effect of external noise.
- Make a required space around the unit for radiation of heat.
 For accurate temperature measurement, warm up the unit over 20 min after turning on the power.
- Make sure that power supply voltage reaches to the rated voltage within 2 sec after supplying power.
- Do not wire to terminals which are not used.
- Install DIN rail vertically from the ground.
- This unit may be used in the following environments.
 ①Indoors (in the environment condition rated in 'Specifications')
 ③Pollution degree 2
- ②Altitude max. 2,000m ④Installation category II

(A) Photoelectric Sensors

(B) Fiber Optic

> (C) Door/Area Sensors

(D) Proximity Sensors

(E) Pressure Sensors

> (F) Rotary

(G)
Connectors/
Connector Cables/
Sensor Distribution
Boxes/Sockets

(H) Temperature Controllers

(I) SSRs / Power Controllers

Counters

(K) Timers

Panel Meters

(M) Tacho / Speed / Pulse Meters

Display Units

Sensor Controllers

(P) Switching Mode Power Supplies

(Q) Stepper Motors & Drivers & Controllers

Logic Panels

Network Devices

> T) Software