Programmable Power Supply

PSH series

USER MANUAL

GW INSTEK PART NO. XXXX-XXXXXX

This manual contains proprietary information, which is protected by copyrights. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of Good Will company.

The information in this manual was correct at the time of printing. However, Good Will continues to improve products and reserves the rights to change specification, equipment, and maintenance procedures at any time without notice.

Good Will Instrument Co., Ltd.

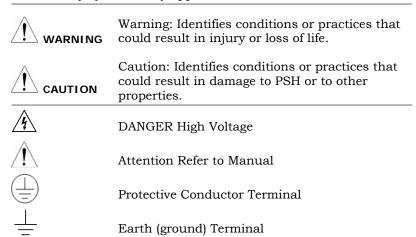
No. 7-1, Jhongsing Rd., Tucheng City, Taipei County 236, Taiwan.

GI INSTEK

Table of Contents

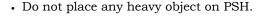
Safety Instr	uctions	5
	Safety Symbols	6
PSH Overvie	ew	11
	Main Features PSH Series Lineup Package Contents Front Panel Rear Panel Display	13 14 16
Setup		21
	AC Power Cable Assembly	24 25 30 32
Panel Opera	tion	43
	Menu Key Overview	sover 45 46 47 48

	Buzzer sound Setting	51
Remote Op	peration	52
	Interface Selection Command Syntax Command Set	57
Calibration	ı	61
F A Q	Calibration Preparation	63 64 66
Appendix		
	Specifications Declaration of Conformity	
Index		76


Safety Instructions

This chapter contains important safety instructions that must be followed when operating PSH and when keeping it in storage. Read the following before any operation to insure safety and to keep the best condition for PSH.

Safety Symbols	Safety Symbols6
Safety	Safety Guidelines6
Guidelines	Power Supply7
	Fuse
	Cleaning PSH7
	Operation Environment8
	Storage Environment8
Power cord	Power cord for the United Kingdom9


Safety Symbols

These safety symbols may appear in this manual or on PSH.

Safety Guidelines

General Guideline

• Avoid severe impacts or rough handling that leads to damaging PSH.

- Do not discharge static electricity to PSH.
- Do not block or obstruct cooling fan vent opening.
- Do not perform measurements at power source and building installation site (Note below).
- Do not disassemble PSH unless you are qualified as service personnel.

(Note) EN 61010-1:2001 specifies the measurement categories and their requirements as follows. PSH falls under category II.

Measurement category IV is for measurement performed

at the source of low-voltage installation.

Measurement category III is for measurement performed in the building installation.

Measurement category II is for measurement performed on the circuits directly connected to the low voltage installation.

Power Supply

• Input voltage: 90 ~ 250 V AC, 50/60 Hz

• The power supply voltage should not fluctuate more than 10%.

 Connect the protective grounding conductor of the power cord to earth ground, to avoid electrical shock.

Fuse

WARNING

PSH-1036A 6.3A/250V x2 PSH-2018A PSH-3610A PSH-6006A PSH-1070A 6.3A/250V x2 PSH-2035A 0.5A/250V x1 15A/250V x1 PSH-3620A PSH-6012A PSH-10100A 6.3A/250V x3 PSH-2050A 0.5A/250V x1 PSH-3630A 20A/250V x1 PSH-6018A

- Make sure the correct type of fuse is installed before powering up.
- Replace the fuse with the specified type and rating only, for continued fire protection.
- Disconnect the power cord before fuse replacement.
- Make sure the cause of the fuse blowout is fixed before fuse replacement.

Cleaning PSH

- · Disconnect the power cord before cleaning.
- Use a soft cloth dampened in a solution of mild detergent and water. Do not spray any liquid into PSH.
- Do not use chemicals or cleaners containing harsh materials such as benzene, toluene,

xylene, and acetone.

Operation Environment

Location: Indoor, no direct sunlight, dust free, almost non-conductive pollution (Note below)

Relative Humidity: < 85%

G Altitude: < 2000m

Temperature: 0°C to 40°C

Input Breaker Capacity: Over 20A (PSH-10100A, 2050A, 3630A, 6018A)

This is a Class A product which may cause radio interference in a domestic environment. In such case, take adequate measures.

(Note) EN 61010-1:2001 specifies the pollution degrees and their requirements as follows. PSH falls under degree 2

Pollution refers to "addition of foreign matter, solid, liquid, or gaseous (ionized gases), that may produce a reduction of dielectric strength or surface resistivity". Pollution degree 1: No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.

Pollution degree 2: Normally only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation must be expected. Pollution degree 3: Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation which is expected. In such conditions, equipment is normally protected against exposure to direct sunlight, precipitation, and full wind pressure, but neither temperature nor humidity is

Storage Environment Location: Indoor

controlled.

Relative Humidity: < 70%

Temperature: -10°C to 70°C

Power cord for the United Kingdom

When using PSH in the United Kingdom, make sure the power cord meets the following safety instructions.

NOTE: This lead / appliance must only be wired by competent persons

WARNING: THIS APPLIANCE MUST BE EARTHED

IMPORTANT: The wires in this lead are coloured in accordance with the

following code:

Green/ Yellow: Earth
Blue: Neutral
Brown: Live (Phase)

As the colours of the wires in main leads may not correspond with the colours marking identified in your plug/appliance, proceed as follows:

The wire which is coloured Green & Yellow must be connected to the Earth terminal marked with the letter E or by the earth symbol - or coloured Green or Green & Yellow.

The wire which is coloured Blue must be connected to the terminal which is marked with the letter N or coloured Blue or Black.

The wire which is coloured Brown must be connected to the terminal marked with the letter L or P or coloured Brown or Red.

If in doubt, consult the instructions provided with the equipment or contact the supplier.

This cable/appliance should be protected by a suitably rated and approved HBC mains fuse: refer to the rating information on the equipment and/or user instructions for details. As a guide, cable of 0.75mm2 should be protected by a 3A or 5A fuse. Larger conductors would normally require 13A types, depending on the connection method used.

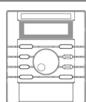
Any moulded mains connector that requires removal /replacement must be destroyed by removal of any fuse & fuse carrier and disposed of immediately, as a plug with bared wires is hazardous if a engaged in live socket. Any re-wiring must be carried out in accordance with the information detailed on this label.

PSH Overview

PSH Series are modular-type programmable switching power supplies designed for broad range of applications. The series consists of 12 models, output ranging from 360W to 1000W. Switching technology and built-in PFC control give PSH higher power efficiency, power density, and power factor compared with other linear power supplies. Protection mechanisms keep the output voltage, current, and temperature within limit. Remote control interface equipped with SCPI command set and Lab-View Driver facilitates ATE software development.

This chapter describes PSH series features and appearances in a nutshell.

Main features	Main Features	12
Series lineup	360W	13
	720W	13
	1000/ 1080W	13
Package	Main unit	14
contents	AC input cable kit	14
	Output connection kit	15
	Manual	15
Panel	Front Panel	16
descriptions	Rear Panel	18
Display	Default display	19
descriptions	Menu mode display	20

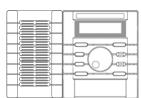

Main Features

Performance	 12 models with wide output range: 6~100A, 10~60V, and 360~1000W. 		
	• High power factor with PFC control		
	High efficiency power conversion		
	Compact size, light weight		
Operation	Constant voltage operation		
	Constant current operation		
	Output On/Off control		
	Built-in buzzer		
	Self test and calibration		
	• LCD display		
Protection	• Over voltage protection (OVP)		
	• Over current protection (OCP)		
	Over temperature protection (OTP)		
Interface	• RS-232 (standard) / GPIB (optional) interface		
	• IEEE 488.2/SCPI compatible command set		
	LabView driver		
Optional items	GPIB remote control interface		
	• 19 inch standard rack mounting		

PSH Series Lineup

PSH series consist of the following 12 models with various output voltage and current ratings. For the detailed specifications, see page71.

360W (Mainframe only)

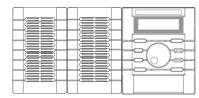

PSH-1036A 10V, 36A

PSH-2018A 20V, 18A

PSH-3610A 36V, 10A

PSH-6006A 60V, 6A

720W (Mainframe + one slave module)


PSH-1070A 10V, 70A

PSH-2035A 20V, 35A

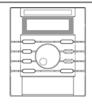
PSH-3620A 36V, 20A

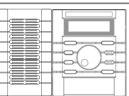
PSH-6012A 60V, 12A

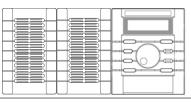
1000/ 1080W (Mainframe + two slave modules)

PSH-10100A 10V, 100A

PSH-2050A 20V, 50A


PSH-3630A 36V, 30A


PSH-6018A 60V, 18A


Package Contents

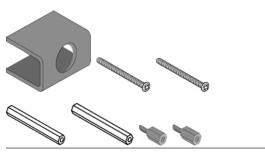
Check the contents before using PSH series. Contact your local dealer in case there is a missing item.

Main unit

AC input cable kit

• Cable gland

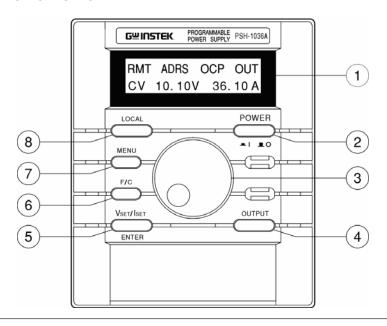
· Terminal cover


· AC power input cord

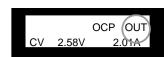
Package Contents (cont.)

Output connection kit

• Terminal cover

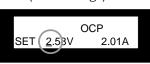

• Output cable screw

Manual


- · User manual (this document)
- Programming manual

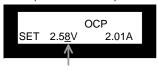

Front Panel

- **1 LCD Display** Shows the output and the configuration status. See page19 for details.
- 2 Power On Off
 Switch
- 3 Wheel knob Sets parameters. Turn right: increase, turn left: decrease.
- 4 Output Turns the output On or Off. When On, the "OUT" sign appears on the display.

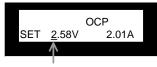

Out On Out Off

5 Vset/Iset/ Enter key Switches between voltage setting mode and current setting mode, or confirm the entered value in the menu mode (see page44).

Vset (edit Voltage)

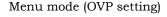


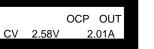
Iset (edit Current)



6 F/C (Fine/ Switches the editing location and resolution: Coarse) key before (coarse) or after (fine) the decimal point.

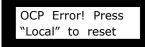
Fine (after decimal)


Coarse (before decimal)

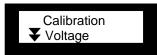


7 Menu key Enters into the menu mode. For details, see page44.

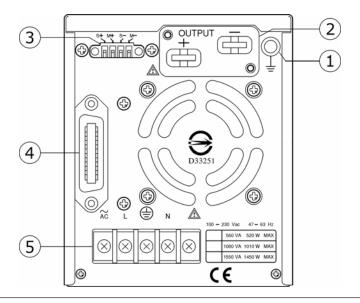
Default mode



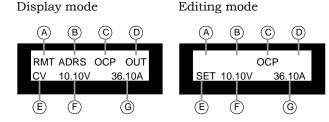
Set OVP * 21.10V


8 Local key

Switches from remote control mode to local operation mode (page 56), OR releases OVP/OCP error messages and go back to normal operation (page 37), OR enters the calibration mode when pressed for more than 5 seconds (page 61).


Error message example

Calibration mode


Rear Panel

1	Ground Terminal	Connect the output line shield (page25) and the remote sensing line shield (page32).
2	Output Terminal	Connect DUT (Device Under Test). For details, see page24.
3	Sense Terminal	Connect the feedback line to compensate for cable loss. For details, see page24 (theory), page32 (cable connection).
4	RS232/ GPIB Terminal	Connect the remote control line. For remote control details, see page52. GPIB requires an optional module. For installation details, see the service manual. Note: Only one interface module (RS232 or GPIB) can be installed at a time.
5	AC input Terminal	Connect the AC power input cable. For details, see page22.

Display

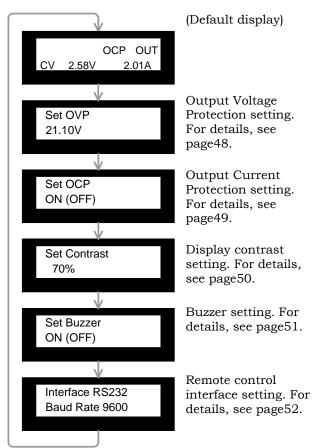
Default display

- A RMT: remote control mode (Nothing): panel operation mode Not available in editing mode
- B ADRS: RS-232 or GPIB address (available in remote control)

 Not available in editing mode
- C OCP: Output Current Protection On (Nothing): Output Current Protection Off
- D OUT: Output On (Nothing): Output Off Not available in editing mode
- E CV/CC: Current and Voltage display mode (Constant Voltage/ Constant Current)

SET: Current and Voltage editing mode

F Output Voltage readback value (display mode)
Output Voltage setting value (editing

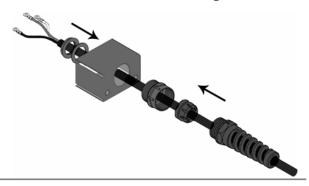

Output Voltage setting value (editing mode)

G Output Current readback value (display mode)
Output Current setting value (editing mode)

Display (cont.)

Menu mode display

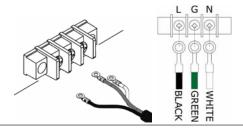
The following displays appear when pressing the Menu key Menu key. To move to the next configuration, press the Menu key repeatedly. When inactive for more than 5 seconds, the display goes back to the default mode.


Setup

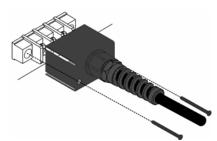
This chapter describes load configurations and setup procedures. Follow these instructions to properly install PSH series.

	properly install PSH series.
AC power cable assembly	AC Power Cable Assembly
	AC power cable requirement23
Load	Remote Sensing and Local Sensing 24
configuration	Load / Remote Sensing Wire Selection 25
	Single Load + Local Sensing26
	Single Load + Remote Sensing 26
	Multiple Loads + Local Sensing 27
	Multiple Loads + Remote Sensing 27
	Series Operation + Local Sensing 28
	Series Operation + Remote Sensing 29
Wire assembly	Load Wire Assembly30
	Remote Sensing Wire Assembly 32
Functionality	Preparation34
Check	Output Voltage & OVP Check
	Output Current Check
	OCP Check
Rack mounting	Rack mounting kit contents40
(optional)	Rack mounting assembly41

AC Power Cable Assembly


1 Cable gland + Terminal Cover Put the power cable through the cable gland and the terminal cover, screw them together.

2 Cable wire + Terminal



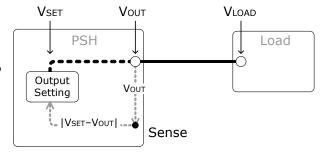
Screw the wire onto the AC input terminal. Note the wire color: Neutral (white), GND (green), and Line (black).

3 Terminal cover + Terminal

Screw the terminal cover onto the terminal.

AC power cable requirement

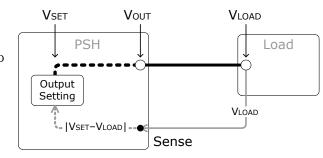
Here is the AC power cable specification, in case of using cables other than the attached one.


Cable length	≤ 3m
Cable gland	KSS or PG-2013
Cable type (recommended)	Model: SJT Type: 3 x 14 AWG stranded copper Rating: 60°C min, 300V Diameter: 9.143~10.03 mm
	Model: H05 VV-F Type: 3G 1.5mm^2 stranded copper Rating: $300 \text{V}/500 \text{V}$ Diameter: $8.5 \pm 0.2 \text{ mm}$

Remote Sensing and Local Sensing

Remote sensing compensates the cable loss between PSH and load, up to 0.5V. Use remote sensing whenever the load voltage has to be accurate.

Local Sensing (default)


VSET = VOUT VOUT > VLOAD

The sense terminal is internally connected to the PSH output terminal. The delta between the voltage setting level (VSET) and the actual output level (VOUT) is compensated. The load terminal voltage (VLOAD) might become lower than the output due to cable loss.

Remote Sensing

VSET = VLOAD VOUT > VSET

The sense terminal is connected to the load input terminal. The delta between the voltage setting level (VSET) and the actual load voltage (VLOAD) is compensated. The output voltage (VOUT) might become higher than the setting due to the compensation.

Load / Remote Sensing Wire Selection

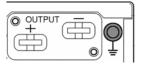
The following instructions apply to both load wire and remote sensing wire, unless noted.

Wire size (FOR LOAD ONLY)

Load wires must have enough current capacity to minimize cable loss and load line impedance. Voltage drop across a wire should not excess 0.5V. The following list is the wire current rating at $450A/cm^2$.

Wire size (AWG)	Max. current (A)	Wire size (AWG)	Max. current (A)
20	2.5	6	61
18	4	4	97
16	6	2	155
14	10	1	192
12	16	1/0	247
10	21	2/0	303
8	36	,	

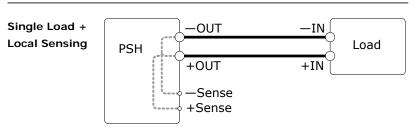
Wire length


To avoid excessive cable loss, shorten the distance between PSH and load as much as possible. Remote sensing compensates cable loss up to 0.5V.

Wire shielding

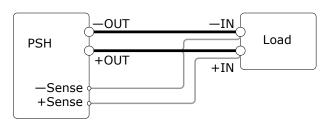
To minimize noise effect and load line impedance, use shielded pair wiring. Twisted wires are more effective, especially for remote sensing.

Wire shield should be connected to the rear panel ground connector.



Load Configuration

Select the appropriate configuration for the target application. For local sensing and remote sensing explanation, see the previous page.

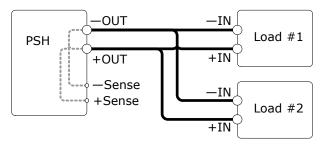

For connection guideline, see page25 (wire selection), page30 (load connection), page32 (remote sensing connection).

Single PSH + single load

Connect the output wire to the load and the sense terminal to the PSH local output monitor.

Single Load + Remote Sensing

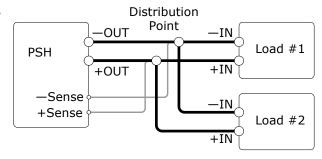
Connect both the output wire and the remote sensing wire to the load.


Single PSH + multiple Load

Condition

- Output current for each load follows the load requirement.
- When the sum of the load current surpasses the rating, PSH automatically switches to CC (Constant Current) mode.

Multiple Loads

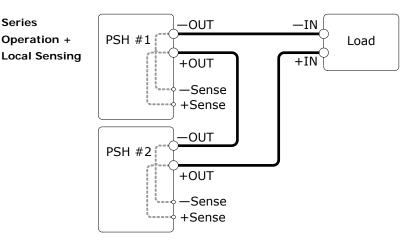

+ Local Sensing

All loads share one PSH output.

Multiple Loads

+ Remote Sensing

Create a distribution point between PSH and the loads. PSH compensates the cable loss up to the distribution point.


To maximize compensation, make sure the distribution point is closer to the load side.

Multiple PSH + single load (series operation)

Condition

- Up to four PSH series (with identical output ratings) can be cascaded.
- Output voltage is the sum of the cascaded PSH.
- Output current is the same as a single PSH.

Series Operation +

First PSH:

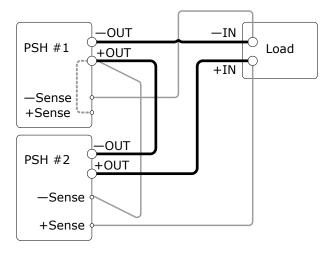
Negative output → Negative load input

Positive output → The next PSH negative output

Intermediate PSH:

Negative output → The previous PSH positive output

Positive output → The next PSH negative output


Last PSH:

Negative output → The previous PSH positive

Positive output → Positive load input

Series Operation (cont.)

Series
Operation +
Remote
Sensing

First PSH:

Negative output → Negative load input

Positive output → The next PSH negative output

Negative sense \rightarrow Negative load input

Positive sense → Positive output monitor

Intermediate PSH:

Negative output → The previous PSH positive output

Positive output → The next PSH negative output

Negative sense → The previous PSH positive

output

Positive sense → Positive output monitor

Last PSH:

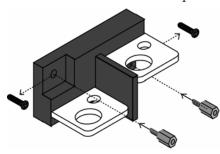
Negative output \rightarrow The previous PSH positive output

Positive output → Positive load input

Negative sense \rightarrow The previous PSH positive

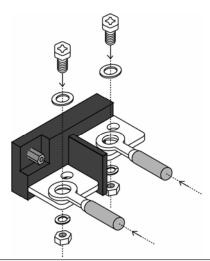
output

Positive sense → Positive load input


Load Wire Assembly

1. Wire selection

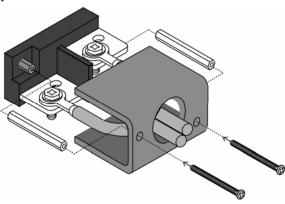
Select the appropriate wire according to the guideline on page 25.


2. Terminal screw replacement

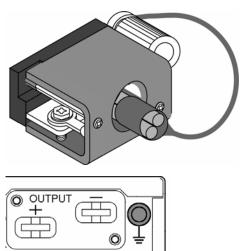
Replace the two screws on the output terminal with the hex screw in the output connection kit.

3. Terminal connection

Screw load wires to the terminal.



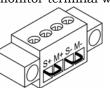
Setup


Setup

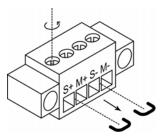
Load Wire Assembly (cont.)

4. Terminal cover assembly Screw the output terminal cover to the rear panel.

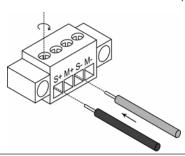
5. Wire shield connection (recommended) Connect the load wire shield to the rear panel ground connector.


Remote Sensing Wire Assembly

Select the appropriate wire according to the guideline on page 25.

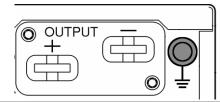

Local sensing

GW INSTEK


The sense terminal is connected to the output monitor terminal with bare wires.

Remote Sensing 1. Take off the wire jumpers.

2. Screw wires to the sense (S) side.


CAUTION

- Do not screw remote sensing wires to the monitor (M) side.
- M+, M- are for output monitoring only. NEVER screw load wires to the remote sensing terminal.

Remote Sensing Wire Assembly (cont.)

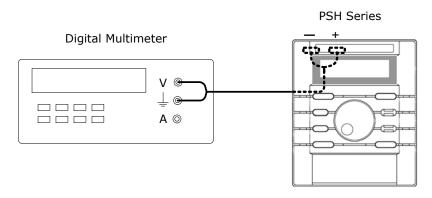
5. Wire shield connection

To minimize noise effect, we recommend covering the remote sensing wire with ground shield and connect it to the ground terminal.

CAUTION

An open remote sense circuit leads to output level overshoot. Make sure the line is securely connected.

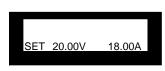
Functionality Check


Check the PSH basic functionalities before operation.

Preparation

Check items	Output Voltage		
	• OVP functions	ality	
	• Output Curre	nt	
	OCP functionality		
Equipment	Digital Multimeter	 DC Voltage Accuracy: <±0.1% Recommended model: GDM-8245, GDM-8246 	
	Current Shunt	• Current range: >100A • Accuracy: <±0.1%	
	PSH – Current Shunt cable	Voltage rating: >70VCurrent rating: >100A	
	Multimeter – Current Shunt cable	• N/A	
When there is a problem	Run calibrations (page61). If this does not solve the issue, refer to the service center.		

Output Voltage & OVP Check


Connection

Checking step

- 1. Power On PSH and connect the Multimeter Voltage measurement terminal.
- 2. Set Output Voltage and Output Current to the rating value.

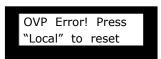
Vset/Iset/Enter key ENTER
 switches the cursor between
 Voltage and Current.

PSH-2018A (20V, 18A)

- F/C key switches the cursor between before and after the decimal point.
- Wheel knob changes the value.
- 3. Press the Menu key once and set the OVP value to rating voltage + 100mV.

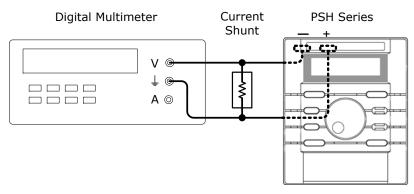
Press the Vset/Iset/Enter key ENTER to confirm the OVP setting.

5. Press the Output $key \xrightarrow{OUTPUT}$ and turn On the output.


The display changes into CV (Constant Voltage) mode and shows the OUT sign on the top right corner.

GW INSTEK

- 6. Make sure the Multimeter reading and the PSH display show approximately the same Voltage.
- 7. Increase the PSH output voltage beyond the OVP value.
- 8. Make sure the display shows an error message.


Press the Local key to get back to the normal display.

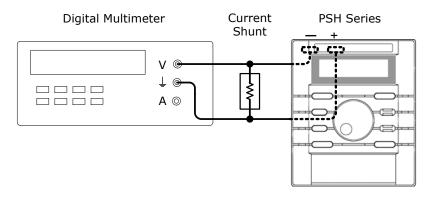
9. Make sure the output is now turned Off in the display and the Multimeter shows no value (No output).

Output Current Check

Connection

Checking step

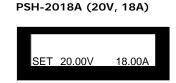
- 1. Power On PSH and connect the Multimeter/ Current Shunt terminal.
- 2. Set the Output Voltage and Current value to the rating.
 - Vset/Iset/Enter key ENTER switches the cursor between Voltage and Current.


SET 20.00V 18.00A

PSH-2018A (20V, 18A)

- F/C key switches the cursor before and after the decimal point.
- Wheel knob changes the value.
- 3. Make sure the Multimeter/Current Shunt shows no output.
- 4. Press the Output key and turn On the output.
- 5. Make sure the Multimeter/Current Shunt reading and the PSH display show approximately the same Current.

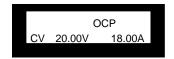
OCP Check


Connection

Checking step

- 1. Power On PSH and connect the Multimeter / Current Shunt terminal.
- 2. Set the Output Voltage and Current value to the rating.

• Vset/Iset/Enter key ENTER switches the cursor between Voltage and Current.


- F/C key switches the cursor before and after the decimal point.
- Wheel knob changes the value.
- 3. Press the Menu key twice to view the OCP setting.

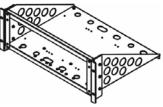
Turn the wheel knob to change OCP setting to ON.

Press the Vset/Iset/Enter key ENTER to confirm the setting.

The OCP sign appears on the upper side of the display.

- 4. Press the Output key and turn On the output.
- 5. Make sure the display shows the error message.

Press the Local key to get back to the normal display.


6. Make sure the output is now turned Off in the display and the Multimeter / Current Shunt shows no value (No output).

Rack Mounting (Optional)


PSH can be mounted on standard 19 inch rack using GRA-403 rack mounting kit.

Rack mounting kit contents

Main bracket x 1

Front panel x 1

Large decoration board x 1

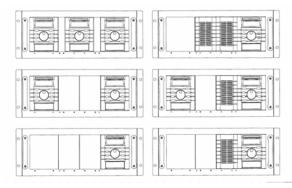
Medium decoration board x 2

Small decoration board x 2

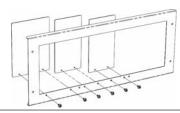
Binding plate x 6

Handle x 2

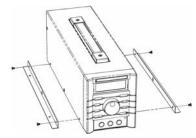
Screw M4 * 0.7 L=10mm x 4


Screw M3 * 0.5 L = 8mm x 18

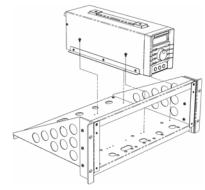
Rack mounting assembly


1. Rack mounting layout

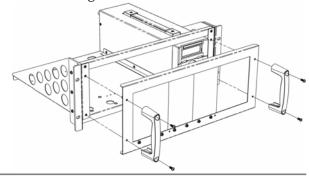
Confirm the rack mount layout. Make sure there is a space between each PSH. Below is the example of rack mounting layout.


2. Decoration board assembly

Once the layout is fixed, screw the decoration boards to the front panel using M3 screws.


3. Binding plate assembly

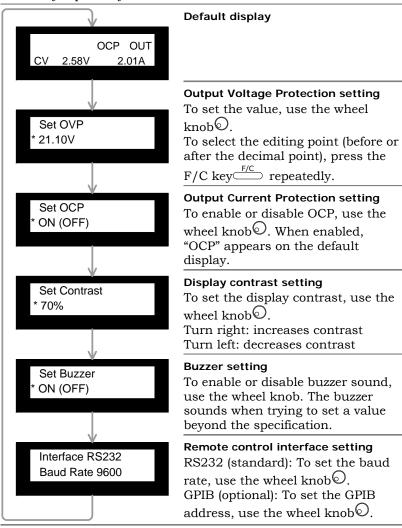
Take off two M3 screws from PSH side panels, front and rear. Hold the binding plate between PSH and drive the same screws in.



4. Main bracket assembly

Fix the PSH to the main bracket using M3 screws.

Fix the front panel and the handle to the main bracket using M4 screws.

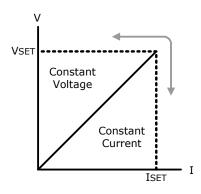

Panel Operation

This chapter describes the manual operations done at the front panel, together with the constant voltage/ constant current crossover characteristics.

Menu key overview	Menu Key Overview44
CV/ CC characteristic	Constant Voltage/ Constant Current Crossover Characteristic
Output Voltage setting	Output Voltage Setting46
Output Current setting	Output Current Setting 47 Note 47
OVP setting	Set the OVP value
OCP setting	Turn the OCP On/Off 49 Clear OCP error 49
Display contrast setting	Display Contrast Setting 50
Buzzer sound setting	Buzzer sound Setting

Menu Key Overview

Press the Menu key $\stackrel{\text{MENU}}{\longrightarrow}$. To move to the next item, press the Menu key repeatedly.



Constant Voltage/ Constant Current Crossover Characteristic

PSH series automatically switch between constant voltage mode and constant current mode, according to the load change.

When the load current is smaller than the limit (ISET), PSH operates in Constant Voltage mode, changing the current level according to the load but keeping the Voltage level at the limit (VSET).

When **the load current is the same** as the limit (ISET), PSH operates in **Constant Current mode**, changing the Voltage level according to the load but keeping the Current level at the limit (ISET).

VSET = Output Voltage setting ISET = Output Current setting

Let's take recharging a 12V battery as an example. PSH output setting is 13.8V, 1A. An empty battery puts a heavy current load on the power supply. PSH starts running at Constant Current mode, supplying full 1A current but keeping the voltage lower than 13.8V. As the battery becomes charged, the load also becomes smaller. PSH then switches to Constant Voltage mode, supplying less than 1A current but supplying full 13.8V.

Display

The display indicates CV (Constant Voltage) or CC (Constant Current) on the left side.

Constant Voltage

OCP OUT CV 2.58V 1.99A Constant Current

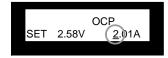
OUT CC 1.33V 2.00A

Output Voltage Setting

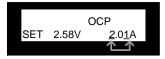
Operation

1. Press the Vset/ Iset key repeatedly to move the underline to the Voltage side.

2. Press the F/C key to move the underline before or after the decimal point.


3. Use the wheel knob to change the output voltage.

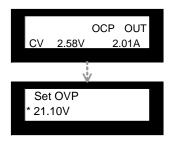
Range	0.00V ~ rating voltage
Step	10mV (rating voltage < 36V) 20mV (rating voltage ≥ 36V)


Output Current Setting

Operation

1. Press the Vset/ Iset key repeatedly to move the underline to the Current side.

2. Press the F/C key to move the underline before or after the decimal point.

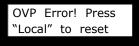

3. Use the wheel knob to change the output current.

Range	0.00A ~ rating current		
Step	10mA		
Note	When the output current exceeds the setting value, PSH automatically switches from CV (Constant Voltage) to CC (Constant Current) mode.		

OVP (Output Voltage Protection) Setting

Set the OVP value

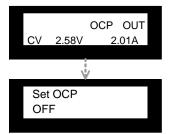
1. Press the Menu key repeatedly until the OVP menu appears.


2. Press the F/C key to move the underline before or after the decimal point.

- 3. Use the wheel knob to change the value.
- 4. Press the Iset/Vset/Enter key ENTER to confirm the value.

Clear OVP error

1. When the output voltage exceeds OVP value, the output is shut off and an OVP error message appears on the display.

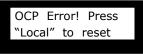

2. Press the Local key to clear the error message (the output is still Off).

Range	0.00V ~ rating voltage		
Step	10mV (rating voltage < 36V) 20mV (rating voltage ≥ 36V)		

OCP (Output Current Protection) Setting

Turn the OCP On/Off

1. Press the Menu key MENU repeatedly until the OCP menu appears.

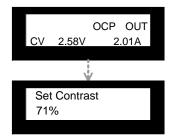

2. Use the wheel knob to change the status to ON (or OFF).

3. Press the Iset/Vset/Enter key ENTER to confirm the setting.

Clear OCP error

1. When the output current exceeds the current setting, the output is shut off and an OCP error message appears on the display.

to clear 2. Press the Local key the error message (the output is still Off).

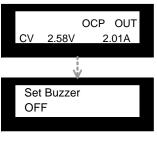

Range

According to the output current

Display Contrast Setting

Operation

1. Press the Menu key MENU repeatedly until the Contrast menu appears.


2. Use the wheel knob to change the contrast. Clockwise: increase, Counterclockwise: decrease.

Range	5% ~ 95%
Step	6%

Buzzer sound Setting

Operation

1. Press the Menu key repeatedly until the Buzzer menu appears.

- 2. Use the wheel knob to change the buzzer setting to ON (or OFF).
- 3. Press the Iset/Vset/Enter key to confirm the value.

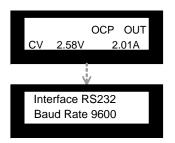
Buzzer condition

When "Set Buzzer ON", the buzzer sounds under the following conditions.

- * When pressing the panel keys
- * When the value setting exceeds the limit

Remote Operation

This chapter describes the IEEE 488.2 based remote control configuration, command syntax, and command set overview. For further descriptions and examples, refer to the programming manual.


	F 8	
nterface	RS232 (Standard)	53
configuration	GPIB (Optional)	55
	Interface functionality check	56
Command set	Command Syntax	57
	General commands	58
	Status commands	59
	Miscellaneous commands	60

Interface Selection

RS232 (Standard)

Baud rate setting

1. Press the Menu key repeatedly until the Interface menu appears.

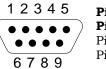
- 2. Use the wheel knob to select the baud rate.
- 3. Press the Iset/Vset/Enter key ENTER to confirm the setting.
- 4. Connect the RS232 cable between your PC and PSH rear panel. PSH switches to remote control mode as soon as the connection is established.

RS-232

Baud rate: 9600, 4800, 2400, 1200 (selectable)

interface Parity: None (fixed)
Stop bit: 1 (fixed)
Data bit: 8 (fixed)

PSH RS-232 pin assignment

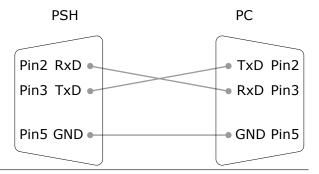


Pin 2: RxD Pin 3: TxD Pin 5: GND

Pin 1, 4, 6 ~ 9: No Connection

PC RS-232 pin assignment

GW INSTEK

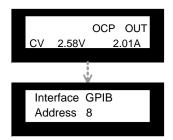


Pin 2: TxD Pin 3: RxDPin 5: GND

Pin 1, 4, 6 ~ 9: No Connection

PSH – PC connection

Null-modem connection, in which transmit (TxD) and receive (RxD) lines are crosslinked, is required.



GPIB (Optional)

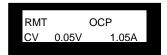
Refer to the service manual for GPIB module installation. Note: The RS232 module has to be replaced with the GPIB module: they cannot be used together.

Address setting

1. Press the Menu key repeatedly until the Interface menu appears.

- 2. Use the wheel knob to select the address. GPIB address: 1 ~ 30
- 3. Press the Iset/Vset/Enter key ENTER to confirm the setting.
- 4. Connect the GPIB cable between your PC and PSH rear panel. PSH switches to remote control mode as soon as the connection is established.

GPIB constraints


- Address range: 1 ~ 30
- Altogether less than 15 devices, less than 20m total cable length, maximum 2m between each device
- Unique address assigned for each device
- At least 2/3 of the GPIB devices turned On
- No loop or parallel structure

Interface functionality check

Remote mode display

GW INSTEK

In the remote control mode, the display shows "RMT" on the top left corner. The panel operation is disabled.

Functionality check

Run this query command via the terminal.

*idn?

This should return the Manufacturer, Model number, Serial number, and Firmware version in the following format.

GW.Inc,PSH-2018A,12345678,FW1.00

Remote Operation

Command Syntax

The commands are fully compatible with IEEE488.2 (1992) standard and partially compatible with SCPI (1994) standard.

Example command	1: Command 2: Single space 3: Parameter			
Command Header	concatenated The above exa	Several command header elements (nodes) can be concatenated to form a complex command. The above example can be separated into: :chan1: (root node) + prot: + curr:		
Parameter example	<1~4> In	or 1. Integer between 1, 2, 3, or 4. Decimal number between 0.01 and 5.		
Message Terminator	Marks the end of a command line. Any of the following is acceptable, in accordance with IEEE488.2 standard. LF^END Line feed code (hexadecimal 0A) with END message			
	LF <dab>^END</dab>	Line feed code		
Message Separator	; (semicolon)	Command separator.		

Command Set

Commands are **non**-case sensitive.

For more detailed information, refer to the Programming Manual which is downloadable from www.gwinstek.com.tw.

General commands

:chan1:curr?	Returns the output current (unit: A).		
	Range: 0.01~rating current		
:chan1:curr	Sets the output current (unit: A).		
<0.01~rating>	Range: 0.01~rating current		
:chan1:volt?	Returns the output voltage (unit: V).		
	Range: 0.01~rating voltage		
:chan1:volt	Returns the output voltage (unit: V).		
<0.01~rating>	Range: 0.01~rating current		
:chan1:meas:cu rr?	Returns the actual output load current (unit: A).		
:chan1:meas:vo lt?	Returns the actual output load voltage (unit: V).		
:chan1:prot:cur	Returns the Over Current Protection status.		
r?	Range: 0 (Off), 1 (On)		
:chan1:prot:cur	Sets the Over Current Protection.		
r <0/1>	Range: 0 (Off), 1 (On)		
:chan1:prot:volt	Returns the Over Voltage Protection value.		
5	Range: 0.01~rating (unit: V)		
:chan1:prot:volt	Sets the Over Voltage Protection value.		
<0.01~rating>	Range: 0.01~rating (unit: V)		
:chan1:prot:cle	Clears the OCP & OVP protection message from		
_	the display.		
:outp:stat?	Returns the output status.		
	Range: 0 (Output Off), 1 (Output On)		
:outp:stat	Sets the output status.		
<0/1>	Range: 0 (Output Off), 1 (Output On)		

Status commands

*cls	Clears all event status registers (Output Queue,		
	Operation Event Status, Questionable Event		
	Status, Standard Event Status)		
*ese?	Returns the ESER (Event Status Enable		
	Register) contents.		
	Example: 130→means ESER=10000010		
*ese <0~255>	Sets the ESER contents.		
	Example: *ese 65→sets ESER to 01000001		
*esr?	Returns and clears the SESR (Standard Event		
	Status Register) contents.		
	Example: 198→means SESR=11000110		
*sre?	Returns the SRER (Service Request Enable		
	Register) contents.		
	Example: 3→means SRER=00000011		
*sre <0~255>	Sets the SRER contents.		
	Example: *SRE 7→SRER=00000111		
*stb?	Returns the SBR (Status Byte Register) contents.		
	Example: 81→means SBR=01010001		
:stat:oper:cond?	Returns the Operation register contents.		
:stat:oper:enab?	Returns the mask conditions of the event		
_	register. Range: 0~32767		
	Example: 32767 means all 15bits are set to 1.		
:stat:oper:enab	Returns the mask conditions of the event		
<0~32767>	register. Range: 0~32767		
	Example: 32767 sets all 15bits to 1.		
:stat:oper:even?	Returns the operation register contents.		
	Example: 32767 means all 15bits are set to 1.		
:stat:pres	Sets the operation register and questionable		
	enable register to zero.		
:stat:ques:enab	Returns the mask conditions of the event		
5	register. Range: 0~32767		
	Example: 32767 means all 15bits are set to 1.		
:stat:ques:enab	Returns the mask conditions of the event		
<0~32767>	register. Range: 0~32767		
	Example: 32767 sets all 15bits to 1.		
:stat:oper:even?	Returns the questionable register contents.		
	Example: 32767 means all 15bits are set to 1.		

Miscellaneous commands

GI INSTEK

rns the power supply ID as Manufacturer,	
Model No, Serial No, Firmware version.	
nple: GW.Inc,PSH-2018A,12345678,FW1.00	
placed in the output queue when all the	
ing operations are completed.	
the operation complete bit (bit0) in SERS	
dard Event Status Register) when all the	
ing operations are completed.	
lls the panel setup from internal memory.	
nple: *RCL 1→recalls setup from memory1	
lls the default panel setup (reset the device).	
s the panel setup to internal memory.	
nple: *SAV 1→saves setup to memory1	
the self-test for RAM and ROM and returns	
ccessful) or -300 (unsuccessful).	
ents execution of further commands until all	
ending operations are completed.	
rns the error number followed by the error	
age from the queue.	
nple: 0, "No error"	
rns the SCPI version.	
nple: 1994.0	

Calibration

Run calibration when the output exceeds the specification, or when the functionality check (page 34) fails. To get the optimal result, make sure PSH is powered for at least 30 minutes before the calibration.

Setup	Calibration Preparation
	Entering calibration mode63
Calibration	Output Voltage calibration64
	Output Current calibration66
	OVP Calibration 68

Calibration Preparation

• At least 30 minutes of warm-up time Calibration condition • Temperature: 23 ± 5 °C • Relative Humidity: ≤ 80% • Minimum/ Maximum Output Voltage Calibration items • Minimum/ Maximum Output Current • OVP functionality Digital • DC Voltage Accuracy: <±0.1% Calibration Multimeter Equipment • Recommended model: GDM-8245, GDM-8246 Current Shunt • Current range: >100A • Accuracy: <±0.1% PSH - Current • Voltage rating: >70V Shunt cable • Current rating: >100A Multimeter – • N/A Current Shunt cable

Entering calibration mode

1. Press the Local key for 5 seconds. The password entry menu appears.

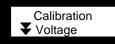
Please enter the Password: <u>0</u>

2. Enter the model number as the password.

Wheel knob changes the digit.

F/C key moves the cursor to the next digit.

(PSH-2018A)


Please enter the Password: 201<u>8</u>

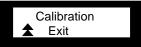
VSET/ ISET

- 3. Press the Vset/Iset/Enter key ENTER as confirmation.
- 4. The calibration menu appears.

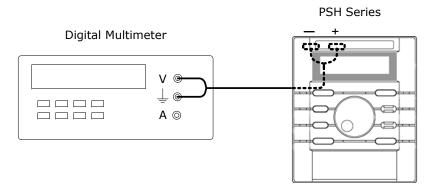
 Wheel knob selects the item.

 Vset/Iset/Enter key ENTER confirms the selection.
- Minimum/Maximum output voltage calibration

• Minimum/Maximum output current calibration



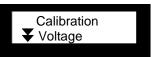
• Over Voltage Protection calibration

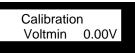

- Save the calibration result and exit the calibration menu
 - calibration menu
- Exit calibration menu without saving the calibration result

Output Voltage calibration

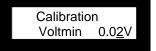
Connection

Calibration step


- 1. Enter the Voltage calibration menu. See page63 for details.
- 2. Press the Vset/Iset/Enter


 key ENTER and enter Minimum
 Voltage calibration mode.
- 3. Adjust the display value to the Multimeter reading.
 Wheel knob changes the value.
 F/C key moves the cursor before and after the decimal point.
- 4. Press the Vset/Iset/Enter

 key ENTER to confirm the setting.

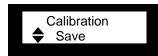

 The display enters Maximum

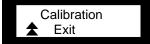
 Voltage calibration mode.

Multimeter reading: 0.02V

Calibration Voltmax 20.00V

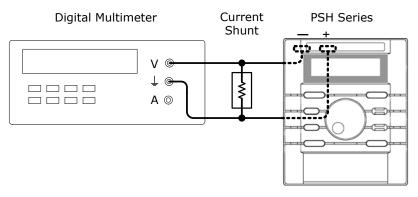
- 5. Adjust the display value to the Multimeter reading.
 Wheel knob changes the value.
 F/C key moves the cursor before and after the decimal point.
- 6. Press the Vset/Iset/Enter


 key ENTER to confirm the setting.


 The display goes back to the default calibration menu.
- 7. Save the result and exit the calibration mode (Save), OR Exit the calibration mode without saving the result (Exit).

Multimeter reading: 20.03V

Calibration Voltmax 20.0<u>3</u>V

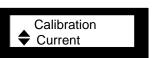


Output Current calibration

Connection

Calibration step

- 1. Enter the Current calibration menu. See page63 for details.
- 2. Press the Vset/Iset/Enter


 key ENTER and enter Maximum

 Current calibration mode.
- 3. Adjust the display value to the Multimeter / Current Shunt reading.
 Wheel knob changes the value.
 F/C key moves the cursor before and after the decimal point.
- 4. Press the Vset/Iset/Enter

 key ENTER to confirm the setting.

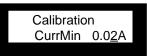
 The display enters Minimum

 Current calibration mode.

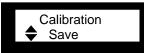
Calibration CurrMax 18.00A

Multimeter reading:18.02A

Calibration CurrMax 18.0<u>2</u>A


Calibration CurrMin 0.00A

- Adjust the display value to the Multimeter / Current Shunt reading.
 Wheel knob changes the value.
 F/C key moves the cursor before and after the decimal point.
- 6. Press the Vset/Iset/Enter


 key ENTER to confirm the setting.

 The display goes back to the default calibration menu.
- 7. Save the result and exit the calibration mode (Save), OR Exit the calibration mode without saving the result (Exit).

Multimeter reading: 0.02A

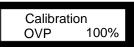
OVP Calibration

Connection

No connection required

Calibration step

1. Enter the Voltage calibration menu. See page63 for details.

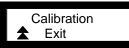


2. Press the Vset/Iset/Enter

VSET/ ISET

key ENTER

PSH calibrates OVP automatically.



3. The display goes back to the default calibration menu.

4. Save the result and exit the calibration mode (Save), OR Exit the calibration mode without saving the result (Exit).

G**uinstek** Faq

FAQ

The OVP value/ OCP status has not been changed.

After editing OVP value and OCP status, press $_{\text{VSET/ ISET}}$

the Vset/Iset/Enter key ENTER to confirm. Otherwise the setting does not change.

The front panel does not respond.

When in remote control mode, PSH does not respond to panel operations. Terminate the

remote operation or press the Local key on the front panel. The "RMT" message disappears from the display and panel operation is resumed.

The actual output is lower than the setting.

The cable loss might be causing the load voltage lower than the setting. Upgrade the output cable to a better capacity and/or use the remote sense to compensate for the voltage drop. See page25 (theory) and page25 (cable assembly).

The actual output is much higher than the setting.

The remote sensing (page24) compensates for the cable loss for up to 0.5V. If the output level goes much higher, the remote sensing terminal might be disconnected. Make sure the connection is secure. See page32 for details.

The load wire does not fit into the terminal.

Make sure you are NOT connecting the load wire to the remote sensing terminal. Refer to page 30 for connection details.

If there is still a problem, please contact your local dealer or GWInstek at www.gwinstek.com.tw / marketing@goodwill.com.tw.

Appendix

Specifications

The specifications apply under the following conditions: PSH is powered on for at least 30 minutes, within $+20^{\circ}$ C $\sim+30^{\circ}$ C.

Common specification

common specific	<u> </u>			
Recovery Time	CV mode	\leq 2ms (50% step load change from 25%~75%)		
Response Time	Voltage Up	\leq 150ms (10%~90% \leq 95% rating load)		
	Voltage Down	\leq 150ms (90%~10% \geq 10% rating load)		
Ripple & Noise	Voltage (mVrms)	≤ 10mVrms,100mVpp,20Hz~20MHz		
	Current (mArms)	≤ 0.2% + 40mA		
Temperature	Voltage	≤ 100ppm/ °C		
Coefficient	(25±5°C)			
Protection	Over Voltage Protection, Over Current Protection, Ov			
	Heat Protection, Inrush Current Protection			
Output On/Off	Available			
AC Power Input	100~230V, 50/ 60 Hz			
Operation	Location 1	ion Indoor		
Condition	Altitude	≤ 2000m		
	Ambient S	Specification: 10°C~35°C (50°F~95°F)		
	temperature (Operation: 0°C~40°C (32°F~104°F)		
	Relative 8	85% RH (maximum), non condensing		
	Humidity			
	Installation (Category II (for details, see page6)		
	Pollution [Degree 2 (for details, see page8)		
Storage Condition	-10°C~70°C, 70% RH (maximum)			
Accessories	User manual, Pro	ogramming manual, Cable gland, AC		
	power cord, AC input cover, O/P terminal cover			

PSH-1036A/ 2018A/ 3610A/ 6006A

Output	PSH-1036A	10V, 36A
	PSH-2018A	20V, 18A
	PSH-3610A	36V, 10A
	PSH-6006A	60V, 6A
Regulation	Load	≤ 0.1% + 5mV
(C.V.)	Line	≤ 0.05% + 5mV
Regulation	Load	≤ 0.2% + 5mA
(C.C.)	Line	≤ 0.2% + 5mA
Ripple & Noise	Voltage (mVrms)	≤ 10mVrms, 100mVpp,
		20Hz~20MHz
	Current (mArms)	≤ 0.2%
Program	Voltage	$\leq 0.05\% + 25mV \text{ (rating } \leq 36V)$
Accuracy		$\leq 0.05\% + 50mV \text{ (rating > 36V)}$
	OVP	\leq 0.1% + 50mV (rating \leq 36V)
		$\leq 0.1\% + 100$ mV (rating > 36V)
	Current	≤ 0.2% + 30mA
Program	Voltage & OVP	10mV (rating ≤ 36V)
Resolution		20mV (rating > 36V)
	Current	10mA
Readback	Voltage	\leq 0.05% + 25mV (rating \leq 36V)
(Meter)		$\leq 0.05\% + 50mV \text{ (rating > 36V)}$
Accuracy	Current	≤ 0.2% + 30mA
Readback	Voltage	10mV (rating ≤ 36V)
(Meter)		20mV (rating > 36V)
Resolution	Current	10mA
Fuse	6.3A/ 250V AC x 2	
Dimensions	108 x 141 x 388 mm	
Weight	Approx. 3.3kg	

PSH-1070A	/ 20251/	/ 2620A/	6012A
PORTIVIOR	V ZUSSA/	SOZUAZ	OUIZA

1 311-107047 200	3A7 3020A7 3012	<u> </u>
Output	PSH-1070A	10V, 70A
	PSH-2035A	20V, 35A
	PSH-3620A	36V, 20A
	PSH-6012A	60V, 12A
Regulation	Load	≤ 0.1% + 5mV
(C.V.)	Line	≤ 0.05% + 5mV
Regulation	Load	≤ 0.2% + 10mA
(C.C.)	Line	≤ 0.2% + 10mA
Ripple & Noise	Voltage (mVrms)	≤ 10mVrms, 100mVpp,
		20Hz~20MHz
	Current (mArms)	≤ 0.2% + 20mA
Program	Voltage	$\leq 0.05\% + 25mV (rating \leq 36V)$
Accuracy		≤ 0.05% + 50mV (rating > 36V)
	OVP	$\leq 0.1\% + 50 \text{mV (rating} \leq 36 \text{V)}$
		≤ 0.1% + 100mV (rating > 36V)
	Current	\leq 0.2% + 60mA (rating \leq 10V)
		\leq 0.2% + 30mA (rating \leq 60V)
Program	Voltage & OVP	10mV (rating ≤ 36V)
Resolution		20mV (rating > 36V)
	Current	20mA (rating \leq 10V)
		10mA (rating ≤ 60V)
Readback	Voltage	$\leq 0.05\% + 25mV (rating \leq 36V)$
(Meter)		\leq 0.05% + 50mV (rating > 36V)
Accuracy	Current	\leq 0.2% + 60mA (rating \leq 10V)
		\leq 0.2% + 30Ma (rating \leq 60V)
Readback	Voltage	10mV (rating ≤ 36V)
(Meter)		20mV (rating > 36V)
Resolution	Current	20mA (rating ≤ 10V)
		10mA (rating ≤ 60V)
Fuse	6.3A/ 250VAC x 2	, 0.5A/ 250VAC x 1, 15A/ 250VAC x 1
Dimensions	188 x 141 x 388 mm	
Difficitisions		

PSH-	101004	/ 2050A	/ 3630A/	΄ 6018Δ
ron-	IUIUUA	ZUSUA	/ JUJUH/	OUTOR

Output	PSH-10100A	10V, 100A
	PSH-2050A	20V, 50A
	PSH-3630A	36V, 30A
	PSH-6018A	60V, 18A
Regulation	Load	≤ 0.1% + 5mV
(C.V.)	Line	≤ 0.05% + 5mV
Regulation	Load	≤ 0.2% + 15mA
(C.C.)	Line	≤ 0.2% + 15mA
Ripple & Noise	Voltage (mVrms)	≤ 10mVrms, 100mVpp,
		20Hz~20MHz
	Current (mArms)	≤ 0.2% + 40mA
Program	Voltage	$\leq 0.05\% + 25mV (rating \leq 36V)$
Accuracy		$\leq 0.05\% + 50mV (rating > 36V)$
	OVP	$\leq 0.1\% + 50 \text{mV (rating} \leq 36 \text{V)}$
		$\leq 0.1\% + 100$ mV (rating > 36V)
	Current	\leq 0.2% + 90mA (rating \leq 10V)
		\leq 0.2% + 60mA (rating \leq 20V)
		\leq 0.2% + 30mA (rating \leq 60V)
Program	Voltage & OVP	10mV (rating ≤ 36V)
Resolution		20mV (rating > 36V)
	Current	30mA (rating ≤ $10V$)
		20mA (rating ≤ 20V)
		10mA (rating ≤ $60V$)
Readback	Voltage	\leq 0.05% + 25mV (rating \leq 36V)
(Meter)		\leq 0.05% + 50mV (rating > 36V)
Accuracy	Current	\leq 0.2% + 90mA (rating \leq 10V)
		\leq 0.2% + 60mA (rating \leq 20V)
		\leq 0.2% + 30Ma (rating \leq 60V)
Readback	Voltage	10mV (rating \leq 36V)
(Meter)		20mV (rating > 36V)
Resolution	Current	$30mA (rating \le 10V)$
		$20mA (rating \le 20V)$
		10mA (rating \leq 60V)
Fuse	6.3A/ 250VAC x 3	, 0.5A/ 250VAC x 1, 20A/ 250VAC x
Dimensions	268 x 141 x 388 r	nm

Declaration of Conformity

GOOD WILL INSTRUMENT CO., LTD.

(1) No.7-1, Jhongsing Rd., Tucheng City, Taipei County, Taiwan (2) No. 69, Lu San Road, Suzhou City (Xin Qu), Jiangsu Sheng, China declare, that the below mentioned product

Type of Product: Power Supply

Model Number:

PSH-1036A/ 2018A/ 3610A/ 6006A PSH-1070A/ 2035A/ 3620A/ 6012A PSH-10100A/ 2050A/ 3630A/ 6018A

are herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Law of Member States relating to Electromagnetic Compatibility (89/336/EEC, 92/31/EEC, 93/68/EEC) and Low Voltage Directive (73/23/EEC, 93/68/EEC).

For the evaluation regarding the Electromagnetic Compatibility and Low Voltage Directive, the following standards were applied:

© EMC

⊕ EMC	
EN 61326-1: Electrical equipment for — EMC requirements (1997 + A1:1998	measurement, control and laboratory use 8 + A2:2001 + A3:2003)
Conducted Emission	Electrostatic Discharge
Radiated Emission	EN 61000-4-2: 1995 + A1:1998 + A2:2001
EN 55011: Class A 1998 + A1:1999 +	
A2:2002	
Current Harmonics	Radiated Immunity
EN 61000-3-2: 2000 + A2:2005	EN 61000-4-3: 2002 + A1:2002
Voltage Fluctuations	Electrical Fast Transients
EN 61000-3-3: 1995 + A1:2001	EN 61000-4-4: 2004
	Surge Immunity
	EN 61000-4-5: 1995 + A1:2001
	Conducted Susceptibility
	EN 61000-4-6: 1996 + A1:2001
	Power Frequency Magnetic Field
	EN 61000-4-8: 1993 + A1:2001
	Voltage Dip/ Interruption
	EN 61000-4-11: 2004

Safety

Low Voltage Equipment Directive 73/23/EEC	
Safety Requirements	
IEC/EN 61010-1: 2001	

Index

AC input
cable assembly
cord requirement
terminal
\boldsymbol{c}
calibration
certificate
CC
characteristic45
cleaning PSH 5, 7
current
OCP setting
output setting
CV
characteristic45
D
display
contrast setting 50
default mode
default mode
fine/coarse
fine/coarse
fine/coarse
fine/coarse
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
fine/coarse
fine/coarse
fine/coarse
fine/coarse

front panel
faq 69
functionality check
OCP38
output current
output voltage35
OVP35
setup
fuse
rating 7, 72, 73, 74
safety instruction
${\it G}$
GPIB
interface setting55
I
IEEE remote control
general commands 58
miscellaneous commands 60
status commands 59
syntax 57
0
OCP
check
operation environment
safety instruction 5, 8
output
cable assembly30
cable selection
current check37
current setting
faq 69
load configuration

Appendix

G<u>U</u>INSTEK Index

voltage check35
voltage setting43, 46
OVP
check35
P
package contents14
power supply
safety instruction
protection
OCP setting49
OVP setting48
PSH lineup13
R
rack mounting
assembly method41
parts list40
rear panel18
remote control
display mode17
terminal18
remote sensing
cable assembly32
cable selection25

configuration
theory
S
safety
guidelines6
symbol
UK power cord9
sound setting 51
specification71
storage environment
safety instruction
T
table of contents
V
verification
equipment64
output voltage
setup 63
voltage
output setting
OVP setting 48