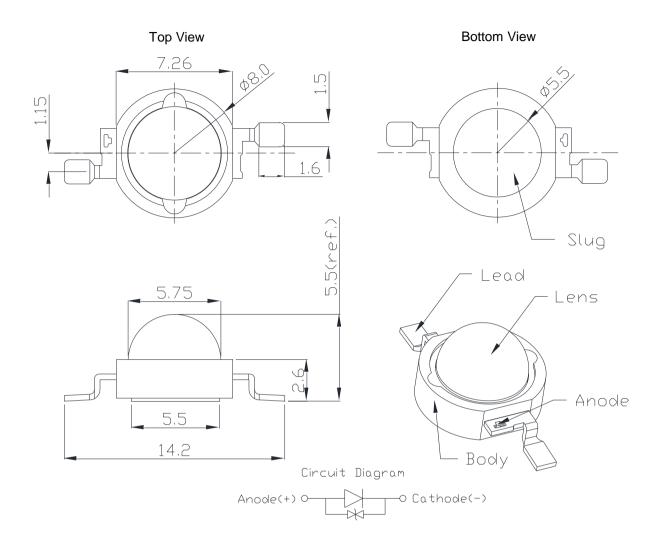


ProLight PM2F-3LLx-SD 3W UV Power LED Technical Datasheet Version: 1.0

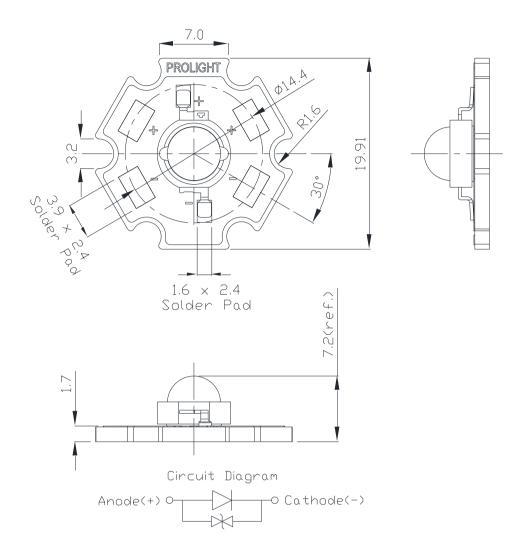

Features

- Instant light (less than 100ns)
- Low-temp. & lead free reflow soldering
- RoHS compliant
- Cool beam, safe to the touch

Typical Applications

- UV gluing, UV curing, UV marking
- UV drying of printing inks and lacquers
- Currency inspection
- Forensic analysis urine, protein stains
- Leak detection using fluorescent dyes
- Detects fluorescing minerals and gems
- Indoor Lighting
- Outdoor Lighting

Emitter Mechanical Dimensions



Notes:

- 1. The Anode side of the device is denoted by a hole in the lead frame.
- 2. Electrical insulation between the case and the board is required. Do not electrically connect either the anode or cathode to the slug.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. Unless otherwise indicated, tolerances are \pm 0.20mm.
- 6. Please do not bend the leads of the LED, otherwise it will damage the LED.
- 7. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Star Mechanical Dimensions

Notes:

- 1. Slots in aluminum-core PCB for M3 or #4 mounting screw.
- 2. Electrical interconnection pads labeled on the aluminum-core PCB with "+" and "-" to denote positive and negative, respectively. All positive pads are interconnected, as are all negative pads, allowing for flexibility in array interconnection.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.
- 5. Unless otherwise indicated, tolerances are \pm 0.20mm.
- 6. Please do not use a force of over 3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics, $T_J = 25^{\circ}C$

					Radiometric Power (mW)		
Radiation	Color	Part Number		@700mA		Refer @350mA	
Pattern	Color	Emitter	Star	Minimum	Typical	Typical	
Lambertian	UV	PM2F-3LLE-SD	PM2F-3LLS-SD	1050	1300	640	

• ProLight maintains a tolerance of ± 7% on flux and power measurements.

• Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics, $T_J = 25^{\circ}C$

Forward Voltage V _F (V)					
Color	Min.	@700mA Typ.	Max.	Refer @350mA Typ.	Thermal Resistance Junction to Slug (°C/ W)
UV	3.10	3.70	4.35	3.30	8

• ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 700mA, $T_J = 25^{\circ}C$

				Total included Angle	Viewing Angle
Color	Pe Min.	eak Wavelength / Typ.	λ _P Max.	(degrees) θ _{0.90V}	(degrees) 2 θ _{1/2}
UV	390 nm	400 nm	410 nm	180	130

• ProLight maintains a tolerance of ± 1nm for dominant wavelength measurements.

Absolute Maximum Ratings

Parameter	UV
DC Forward Current (mA)	700
Peak Pulsed Forward Current (mA)	1000 (less than 1/10 duty cycle@1KHz)
ESD Sensitivity (HBM per MIL-STD-883E Method 3015.7)	> ±500V
LED Junction Temperature	120°C
Operating Board Temperature at Maximum DC Forward Current	-40°C - 100°C
Storage Temperature	-40°C - 120°C
Soldering Temperature	JEDEC 020c 240°C
Allowable Reflow Cycles	3
Reverse Voltage	Not designed to be driven in reverse bias

Radiometric Power Bin Structure at 700mA

	Color	Bin Code	Minimum Radiometric Power (mW)	Maximum Radiometric Power (mW)	Available Color Bins
ſ		V	1050	1225	2,3,4 [1]
	UV	W	1225	1400	[1]
		Х	1400	1680	[1]

• ProLight maintains a tolerance of ± 7% on flux and power measurements.

• The flux bin of the product may be modified for improvement without notice.

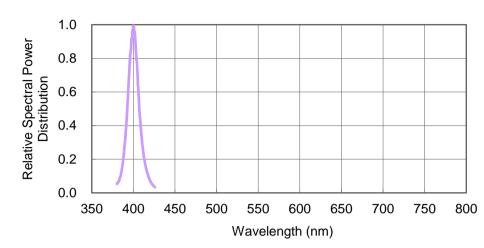
• ^[1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order possibility.

Peak Wavelength Bin Structure

Color	Bin Code	Minimum Peak Wavelength (nm)	Maximum Peak Wavelength (nm)
	1	390	395
UV	2	395	400
01	3	400	405
	4	405	410

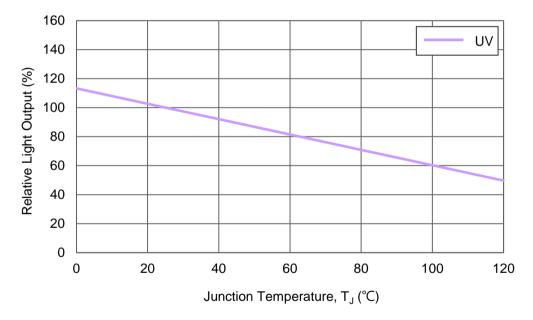
• ProLight maintains a tolerance of ± 1nm for peak wavelength measurements.

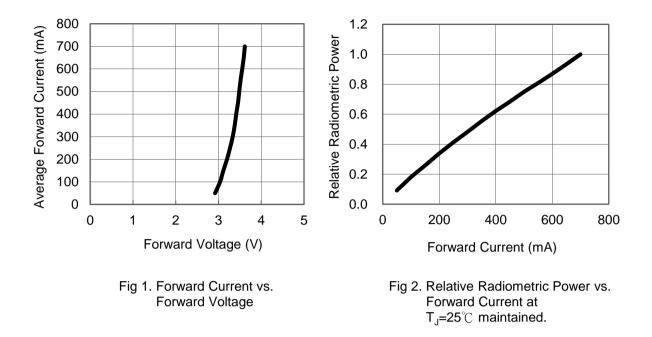
Forward Voltage Bin Structure at 700mA


_	Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
ſ		В	3.10	3.35
		D	3.35	3.60
	UV	E	3.60	3.85
		F	3.85	4.10
		G	4.10	4.35

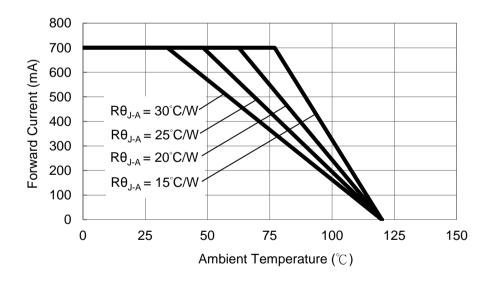
• ProLight maintains a tolerance of $\pm 0.1V$ for Voltage measurements.

Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

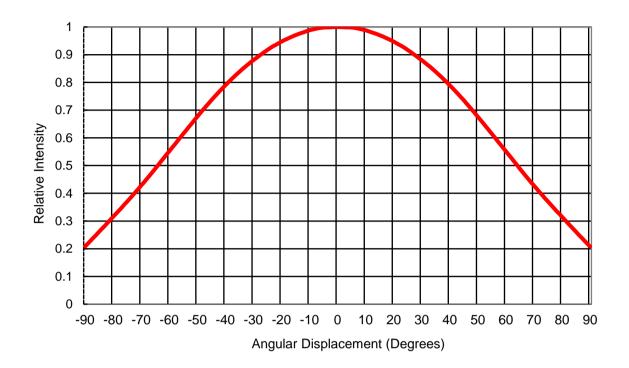

Color Spectrum, $T_J = 25^{\circ}C$



Light Output Characteristics



Forward Current Characteristics, $T_J = 25^{\circ}C$


Ambient Temperature vs. Maximum Forward Current

Typical Representative Spatial Radiation Pattern

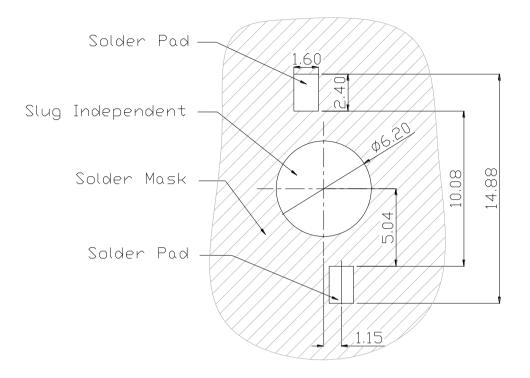
Lambertian Radiation Pattern

Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life (RTOL)	25°C, I_F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Operating Life (WHTOL)	85°C/60%RH, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Storage Life (WHTSL)	85°C/85%RH, non-operating	1000 hours	Note 2
High Temperature Storage Life (HTSL)	110°C, non-operating	1000 hours	Note 2
Low Temperature Storage Life (LTSL)	-40°C, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	-40°C to 120°C, 30 min. dwell, <5 min. transfer	200 cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		Note 3
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis		Note 3
Solder Heat Resistance (SHR)	260°C ± 5°C, 10 sec.		Note 3
Solderability	Steam age for 16 hrs., then solder dip at 260°C for 5 sec.		Solder coverage on lead

Notes:

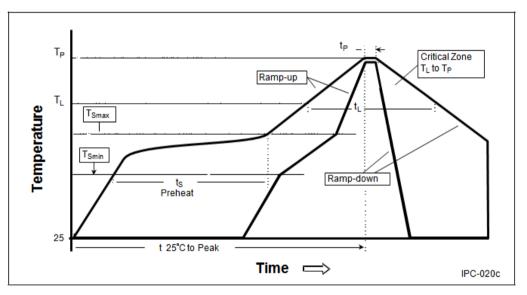
1. Depending on the maximum derating curve.


2. Criteria for judging failure

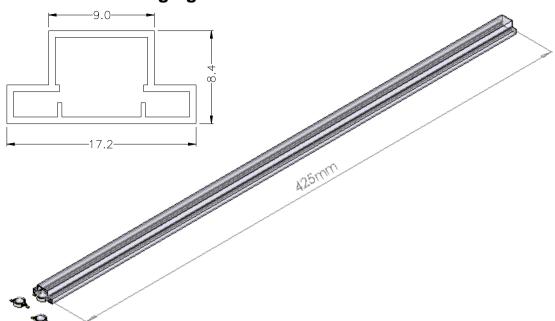
ltem	Test Condition	Criteria for Judgement		
item	rest condition	Min.	Max.	
Forward Voltage (V _F)	I _F = max DC	-	Initial Level x 1.1	
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7	-	

* The test is performed after the LED is cooled down to the room temperature.

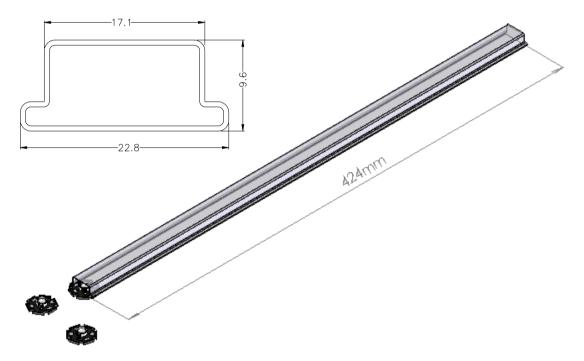
3. A failure is an LED that is open or shorted.


Recommended Solder Pad Design

- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.


Reflow Soldering Condition

Profile Feature	Sn-Pb Eutectic Assembly	Low-Temp. & Pb-Free Assembly (58Bi-42Sn Eutectic Alloy)
Average Ramp-Up Rate $(T_{Smax}$ to $T_P)$	3°C / second max.	2°C / second max.
Preheat – Temperature Min (T _{Smin}) – Temperature Max (T _{Smax})	100°C 150°C	90°C 120°C
– Time (t_{Smin} to t_{Smax})	60-120 seconds	60-120 seconds
Time maintained above: – Temperature (T _L) – Time (t _L)	183°C 60-150 seconds	138°C 20-50 seconds
Peak/Classification Temperature (T _P)	240°C	185°C
Time Within 5°C of Actual Peak Temperature (t _P)	10-30 seconds	10-30 seconds
Ramp-Down Rate	6°C/second max.	3°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	4 minutes max.



- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Tube Packaging

Star Tube Packaging

Notes:

- 1. Emitter 50 pieces per tube and Star 20 pieces per tube.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. All dimendions without tolerances are for reference only.
- **Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH.

Precaution for Use

Storage

Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30°C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.

- The slug is is not electrically neutral. Therefore, we recommend to isolate the heat sink.
- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/