

## ISP1507 Serialization User Guide

### **Application Note AN190401**



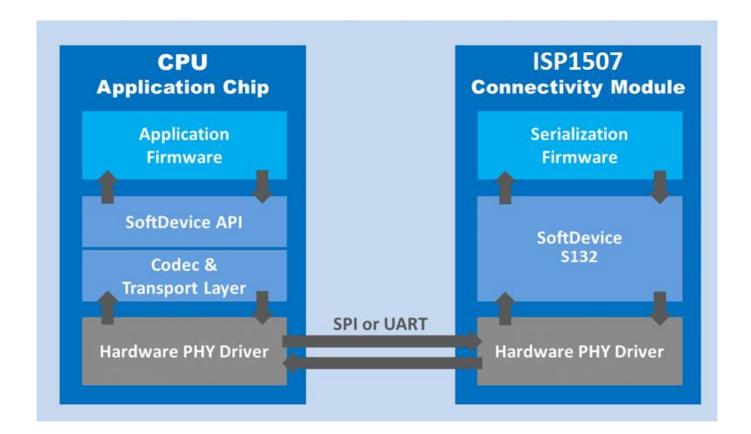
### Introduction

### Scope

This application note describes how to set up BLE serialization between an ISP1507 module and a main application CPU.

### **Contents**

| 1.   | Generalities                       | 2  |
|------|------------------------------------|----|
| 1.1. | GeneralitiesArchitectural Overview | 2  |
| 1.2. | Application module                 | 3  |
| 1.3. |                                    | 3  |
| 2.   | Hardware Configuration             | 4  |
| 2.1. | Module Pin Description             | 4  |
| 2.2. |                                    | 6  |
| 2.3. | UART Connection Parameters         | 6  |
| 3.   | Software Functions and Events      | 7  |
| 3.1. |                                    | 7  |
| 3.2. | Command List                       | 8  |
| 3.3. |                                    | 10 |
| 4.   | Serialization Example              | 12 |
| 4.1. | Hardware Setup                     | 12 |
| 4.2. |                                    | 13 |
| 4.3. |                                    |    |


### 1. Generalities

#### 1.1. Architectural Overview

Some applications need the addition of a BLE connectivity while developers want to keep their system architecture based on a specific CPU. Other applications are using BLE SoftDevice that cannot be ported to the ISP1507, for example because they use specific peripherals or need more resources like RAM, flash memory, or CPU speed.

In this case using the ISP1507 module preprogrammed with the Nordic BLE Serialization API may be the solution. Serialization makes it possible to place a Bluetooth application on an application module and connect it to a connectivity module that runs the SoftDevice.

The serialization libraries and the connectivity example simplify the serialization of an existing application, because only limited modifications are needed in the application itself.



### 1.2. Application module

The application module runs a serialized application, where the SoftDevice is replaced by a commands encoder and events decoder.

In this Application Note, a standard ISP1507 is used here merely as a demonstration device. After porting the hardware driver to the selected PHY layer, one can use a different microcontroller.

To port serialization libraries to another microcontroller, refer to the Nordic Infocenter: https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v15.3.0/lib\_serialization.html

This information applies to the following SoftDevices: \$132

The application chip does not need a SoftDevice. It is replaced by a Codec that implements the SoftDevice API.

All function calls to the Codec are serialized and transmitted to the connectivity chip using the transport layer drivers (UART or SPI).

### 1.3. Connectivity module

The connectivity module is an ISP1507 that is pre-programmed with a SoftDevice. It decodes serialized SoftDevice commands from the application chip and issues the corresponding call to the SoftDevice.

Any event from the SoftDevice is encoded by the Codec that implements the SoftDevice API. Through the transport layer, it is then transmitted to the application chip, where it is decoded and passed to the application.

In addition to the SoftDevice, the connectivity chip must be programmed with the connectivity software.



### 2. Hardware Configuration

### 2.1. Module Pin Description

|    |             | Description             | n for AX version                                                                                            | Description             | on for AL version                                                                                           |
|----|-------------|-------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------|
| 1  | Ground      | VSS                     | Must be connected to ground                                                                                 | VSS                     | Must be connected to ground                                                                                 |
| 2  | Digital I/O | P0_09                   | General purpose I/O pin                                                                                     | P0_12                   | SPI REQUEST                                                                                                 |
|    | NFC Input   | NFC1                    | NFC antenna connection                                                                                      |                         |                                                                                                             |
| 3  | Digital I/O | P0_12                   | SPI REQUEST                                                                                                 | NC                      | Isolated pad                                                                                                |
| 4  | Digital I/O | P0_10                   | General purpose I/O pin                                                                                     | P0_14                   | General purpose I/O pin                                                                                     |
|    | NFC Input   | NFC2                    | NFC antenna connection                                                                                      | TRACE<br>DATA3          | Trace port output                                                                                           |
| 5  | Digital I/O | P0_14<br>TRACE<br>DATA3 | General purpose I/O pin Trace port output                                                                   | NC                      | Isolated pad                                                                                                |
| 6  | Digital I/O | P0_26                   | SPI/nUART - SPI active high / UART active low                                                               | P0_18<br>TRACE<br>DATA0 | SPI/nUART - SPI active high / UART active low                                                               |
| 7  | Ground      | VSS                     | Must be connected to ground                                                                                 | VSS                     | Must be connected to ground                                                                                 |
| 8  | Ground      | VSS                     | Must be connected to ground                                                                                 | VSS                     | Must be connected to ground                                                                                 |
| 9  | Digital I/O | P0_16<br>TRACE<br>DATA1 | UART CTS                                                                                                    | P0_16<br>TRACE<br>DATA1 | UART CTS                                                                                                    |
| 10 | Ground      | VSS                     | Must be connected to ground                                                                                 | VSS                     | Must be connected to ground                                                                                 |
| 11 | Digital I/O | P0_18<br>TRACE<br>DATA0 | General purpose I/O pin Trace port output                                                                   | NC                      | Isolated pad                                                                                                |
| 12 | Ground      | VSS                     | Must be connected to ground                                                                                 | VSS                     | Must be connected to ground                                                                                 |
| 13 | Digital I/O | P0_21<br>RESET          | General purpose I/O pin<br>Configurable as system RESET<br>pin                                              | P0_21<br>RESET          | General purpose I/O pin<br>Configurable as system RESET<br>pin                                              |
| 14 | Ground      | VSS                     | Must be connected to ground                                                                                 | VSS                     | Must be connected to ground                                                                                 |
| 15 | Digital I/O | P0_20<br>TRACE<br>CLK   | General purpose I/O pin Trace port clock output                                                             | NC                      | Isolated pad                                                                                                |
| 16 | Ground      | VSS                     | Must be connected to ground                                                                                 | VSS                     | Must be connected to ground                                                                                 |
| 17 | Digital I/O | P0_22                   | General purpose I/O pin                                                                                     | NC                      | Isolated pad                                                                                                |
| 18 | Ground      | VSS                     | Must be connected to ground                                                                                 | VSS                     | Must be connected to ground                                                                                 |
| 19 | Digital I/O | P0_24                   | SPI READY                                                                                                   | P0_20<br>TRACE<br>CLK   | SPI READY                                                                                                   |
| 20 | Antenna I/O | OUT_ANT                 | This pin is connected to the internal antenna It should be connected to Pin 22 OUT_MOD for normal operation | OUT_ANT                 | This pin is connected to the internal antenna It should be connected to Pin 22 OUT_MOD for normal operation |
| 21 | Ground      | VSS                     | Must be connected to ground                                                                                 | VSS                     | Must be connected to ground                                                                                 |



| Pin8        | Туре                        | Description             | n for AX version                                                                                           | Description             | n for AL version                                                                                           |
|-------------|-----------------------------|-------------------------|------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------|
| 22          | Antenna I/O                 | OUT_MOD                 | This pin is the RF I/O pin of the BLE module It should be connected to Pin 20 OUT_ANT for normal operation | OUT_MOD                 | This pin is the RF I/O pin of the BLE module It should be connected to Pin 20 OUT_ANT for normal operation |
| 23          | Ground                      | VSS                     | Must be connected to ground                                                                                | VSS                     | Must be connected to ground                                                                                |
| 24          | Ground                      | VSS                     | Must be connected to ground                                                                                | VSS                     | Must be connected to ground                                                                                |
| 25          | Ground                      | VSS                     | Must be connected to ground                                                                                | VSS                     | Must be connected to ground                                                                                |
| 26          | Power                       | VCC                     | Power supply (1.7 – 3.6V)                                                                                  | VCC                     | Power supply (1.7 – 3.6V)                                                                                  |
| 27          | Digital I/O                 | P0_17                   | General purpose I/O pin                                                                                    | NC                      | Isolated pad                                                                                               |
| 28          | Digital I/O                 | SWDIO                   | Serial Wire Debug I/O for debug and programming                                                            | SWDIO                   | Serial Wire Debug I/O for debug and programming                                                            |
| 29          | Digital I/O                 | P0_13                   | General purpose I/O pin                                                                                    | NC                      | Isolated pad                                                                                               |
| 30          | Digital Input               | SWDCLK                  | Serial Wire Debug clock input for debug and programming                                                    | SWDCLK                  | Serial Wire Debug clock input for debug and programming                                                    |
| 31          | Ground                      | VSS                     | Must be connected to ground                                                                                | VSS                     | Must be connected to ground                                                                                |
| 32          | Digital I/O                 | P0_08                   | UART RTS                                                                                                   | P0_08                   | UART RTS                                                                                                   |
| 33          | Digital I/O                 | P0_07                   | General purpose I/O pin                                                                                    | NC                      | Isolated pad                                                                                               |
| 34          | Digital I/O                 | P0_06                   | SPI CSN Slave Select                                                                                       | P0_17                   | SPI CSN Slave Select                                                                                       |
| 35          | Digital I/O<br>Analog Input | P0_04<br>AIN2           | General purpose I/O pin SAADC/COMP/LPCOMP input                                                            | NC                      | Isolated pad                                                                                               |
| 36          | Digital I/O<br>Analog Input | P0_05<br>AIN3           | UART RXD                                                                                                   | P0_05<br>AIN3           | UART RXD                                                                                                   |
| 37          | Digital I/O                 | P0_15<br>TRACE<br>DATA2 | General purpose I/O pin Trace port output                                                                  | NC                      | Isolated pad                                                                                               |
| 38          | Digital I/O<br>Analog Input | P0_03<br>AIN1           | UART TXD                                                                                                   | P0_03<br>AIN1           | UART TXD                                                                                                   |
| 39          | Digital I/O                 | P0_27                   | General purpose I/O pin                                                                                    | NC                      | Isolated pad                                                                                               |
| 40          | Digital I/O<br>Analog Input | P0_02<br>AIN0           | General purpose I/O pin SAADC/COMP/LPCOMP input                                                            | P0_01<br>XL2            | Do not connect – Leave floating                                                                            |
| 41          | Digital I/O                 | P0_25                   | General purpose I/O pin                                                                                    | NC                      | Isolated pad                                                                                               |
| 42          | Digital I/O<br>Analog Input | P0_31<br>AIN7           | General purpose I/O pin SAADC/COMP/LPCOMP input                                                            | P0_00<br>XL1            | Do not connect – Leave floating                                                                            |
| 43          | Digital I/O                 | P0_11                   | General purpose I/O pin                                                                                    | NC                      | Isolated pad                                                                                               |
| 44          | Digital I/O<br>Analog Input | P0_30<br>AIN6           | SPI SCK Clock                                                                                              | P0_15<br>TRACE<br>DATA2 | SPI SCK Clock                                                                                              |
| 45          | Digital I/O                 | P0_19                   | General purpose I/O pin                                                                                    | NC                      | Isolated pad                                                                                               |
| 46          | Digital I/O<br>Analog Input | P0_29<br>AIN5           | SPI MOSI Master Out Slave In                                                                               | P0_04<br>AIN2           | SPI MOSI Master Out Slave In                                                                               |
| 47          | Digital I/O                 | P0_23                   | General purpose I/O pin                                                                                    | NC                      | Isolated pad                                                                                               |
| 48          | Digital I/O<br>Analog Input | P0_28                   | SPI MISO Master In Slave Out                                                                               | P0_11                   | SPI MISO Master In Slave Out                                                                               |
| 49<br>to 62 | Not                         | NC                      | Isolated pad on application PCB for mechanical stability                                                   | NC                      | Isolated pad                                                                                               |



### 2.2. SPI Connection Parameters

ISP1507 module is using the following SPI parameters. Please adjust SPI parameters on the Application chip accordingly:

- Mode 0 (CPOL= 0 and CPHA= 0)
- LSB First
- Connection speed 8 M bauds maximum

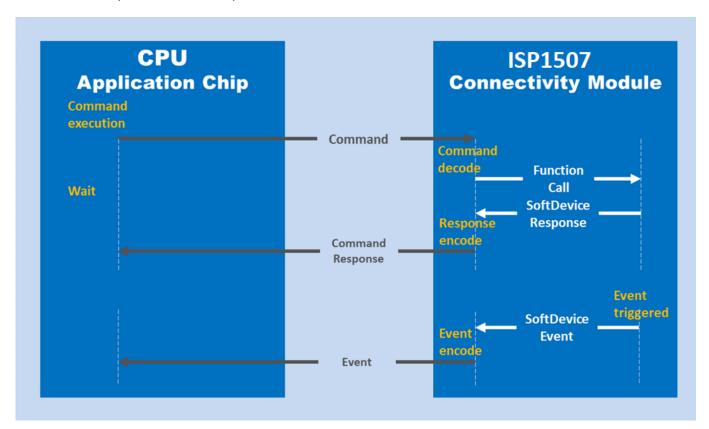
### 2.3. UART Connection Parameters

ISP1507 module is using the following UART parameters. Please adjust UART parameters on the Application chip accordingly:

- Flow Control: Enabled
- Parity: 1 bit
- Connection speed 1 M bauds

### 3. Software Functions and Events

Please refer to Nordic Infocenter nRF5 SDK v15.3.0 documentation for detailed information on Command and Events packet format:


https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v15.3.0/serialization\_codecs.html

### 3.1. Packet Encoding Format

All frames have the following format:

| Packet Type | Packet         |
|-------------|----------------|
| 1 byte      | Variable bytes |
| ·           |                |

Command, Response and Event packet course:





| Packet <sup>-</sup> | Туре                    | Description                                                                                                                                                       |
|---------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x00                | BLE Command             | The packet is sent from the application chip to the BLE Connectivity Chip, where it will be decoded and the corresponding function in the SoftDevice is executed. |
| 0x01                | BLE Command<br>Response | After a function in the SoftDevice is received, the response is encoded in the BLE Connectivity Chip and a response packet is sent to the application chip.       |
| 0x02                | BLE Event               | If an event is triggered in the SoftDevice, an event packet is sent from the BLE Connectivity Chip to the application chip.                                       |
| 0x03                | DTM command             | The packet is sent from the application chip to the connectivity chip, where it is decoded and the chip enters DTM mode.                                          |
| 0x04                | DTM command<br>Response | Before the connectivity chip enters DTM mode, it sends a response packet to the application chip.                                                                 |
| 0x05                | System reset command    | The application chip sends a system reset command to the connectivity chip.                                                                                       |

### 3.2. Command List

### See BLE S13x Functions:

 $https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v11.0.0/ble\_serialization\_s130\_functions.html$ 

| Opera | ation Code                 | Description                                                                                               |
|-------|----------------------------|-----------------------------------------------------------------------------------------------------------|
| 0x3C  | sd_power_system_off        | Puts the chip in System OFF mode                                                                          |
| 0x4D  | sd_ecb_block_encrypt       | Encrypts a block according to the specified parameters                                                    |
| 0x53  | sd_temp_get                | Get the temperature measured on the chip                                                                  |
| 0x60  | sd_ble_enable              | Enable the BLE stack                                                                                      |
| 0x62  | sd_ble_tx_packet_count_get | Get the total number of available guaranteed application transmission packets for a particular connection |
| 0x63  | sd_ble_uuid_vs_add         | Add a Vendor Specific UUID                                                                                |
| 0x64  | sd_ble_uuid_decode         | Decode little endian raw UUID bytes (16-bit or 128-bit) into a 24-bit ble_uuid_t structure                |
| 0x65  | sd_ble_uuid_encode         | Encode a ble_uuid_t structure into little endian raw UUID bytes (16-bit or 128-bit)                       |
| 0x66  | sd_ble_version_get         | Get Version Information                                                                                   |
| 0x67  | sd_ble_user_mem_reply      | Provide a user memory block                                                                               |
| 0x68  | sd_ble_opt_set             | Set a BLE option                                                                                          |
| 0x69  | sd_ble_opt_get             | Get a BLE option                                                                                          |
| 0x70  | sd_ble_gap_address_set     | Set local Bluetooth address                                                                               |
| 0x71  | sd_ble_gap_address_get     | Get local Bluetooth address                                                                               |
| 0x72  | sd_ble_gap_adv_data_set    | Set, clear or update advertising and scan response data                                                   |



| Opera        | ition Code                             | Description                                              |
|--------------|----------------------------------------|----------------------------------------------------------|
| 0x73         | sd_ble_gap_adv_start                   | Start advertising (GAP Discoverable, Connectable         |
|              |                                        | modes, Broadcast Procedure)                              |
| 0x74         | sd_ble_gap_adv_stop                    | Stop advertising (GAP Discoverable, Connectable          |
| •            |                                        | modes, Broadcast Procedure)                              |
| 0x75         | sd_ble_gap_conn_param_update           | Update connection parameters                             |
| 0x76         | sd_ble_gap_disconnect                  | Disconnect (GAP Link Termination)                        |
| 0x77         | sd_ble_gap_tx_power_set                | Set the radio's transmit power                           |
| 0x78         | sd_ble_gap_appearance_set              | Set GAP Appearance value                                 |
| 0x79         | sd_ble_gap_appearance_get              | Get GAP Appearance value                                 |
| 0x7A         | sd_ble_gap_ppcp_set                    | Set GAP Peripheral Preferred Connection                  |
| OXIII        | 3d_blc_gap_ppop_3ct                    | Parameters                                               |
| 0x7B         | sd_ble_gap_ppcp_get                    | Get GAP Peripheral Preferred Connection                  |
| ONID         | Su_bic_gap_ppop_get                    | Parameters                                               |
| 0x7C         | sd_ble_gap_device_name_set             | Set GAP device name                                      |
| 0x7D         | sd_ble_gap_device_name_get             | Get GAP device name                                      |
| 0x7E         | sd_ble_gap_authenticate                | Initiate the GAP Authentication procedure                |
| 0x7F         | sd_ble_gap_sec_params_reply            | Reply with GAP security parameters                       |
| 0x71<br>0x80 | sd_ble_gap_auth_key_reply              | Reply with an authentication key                         |
| 0x81         | sd_ble_gap_lesc_dhkey_reply            | Reply with an LE Secure connections DHKey                |
| 0x81<br>0x82 |                                        | <u> </u>                                                 |
|              | sd_ble_gap_keypress_notify             | Notify the peer of a local keypress                      |
| 0x83         | sd_ble_gap_lesc_oob_data_get           | Generate a set of OOB data to send to a peer out of band |
| 0x84         | sd_ble_gap_lesc_oob_data_set           | Provide the OOB data sent/received out of band           |
| 0x85         | sd_ble_gap_encrypt                     | Initiate GAP Encryption procedure                        |
| 0x86         | sd_ble_gap_sec_info_reply              | Reply with GAP security information                      |
| 0x87         | sd_ble_gap_conn_sec_get                | Get the current connection security                      |
| 0x88         | sd_ble_gap_rssi_start                  | Start reporting the received signal strength to the      |
|              |                                        | application                                              |
| 0x89         | sd_ble_gap_rssi_stop                   | Stop reporting the received signal strength              |
| A8x0         | sd_ble_gap_scan_start                  | Start scanning (GAP Discovery procedure,                 |
|              |                                        | Observer Procedure)                                      |
| 0x8B         | sd_ble_gap_scan_stop                   | Stop scanning (GAP Discovery procedure,                  |
|              |                                        | Observer Procedure)                                      |
| 0x8C         | sd_ble_gap_connect                     | Create a connection (GAP Link Establishment)             |
| 0x8D         | sd_ble_gap_connect_cancel              | Cancel a connection establishment                        |
| 0x8E         | sd_ble_gap_rssi_get                    | Get the received signal strength for the last            |
|              |                                        | connection event                                         |
| 0x90         | sd_ble_gattc_primary_services_discover | Initiate or continue a GATT Primary Service              |
|              |                                        | Discovery procedure                                      |
| 0x91         | sd_ble_gattc_relationships_discover    | Initiate or continue a GATT Relationship Discovery       |
|              | 0                                      | procedure                                                |
| 0x92         | sd_ble_gattc_characteristics_discover  | Initiate or continue a GATT Characteristic Discovery     |
| y-           |                                        | procedure                                                |
| 0x93         | sd_ble_gattc_descriptors_discover      | Initiate or continue a GATT Characteristic Descriptor    |
|              |                                        | Discovery procedure                                      |
|              |                                        | × 1                                                      |

April 29, 2019 Page 9/15 Document Ref: isp\_ble\_AN190401\_R0 .docx



| 0    | : 2 1                                | D : //                                               |
|------|--------------------------------------|------------------------------------------------------|
|      | ation Code                           | Description                                          |
| 0x94 | sd_ble_gattc_attr_info_discover      | Discovers information about a range of attributes on |
|      |                                      | a GATT server                                        |
| 0x95 | sd_ble_gattc_char_value_by_uuid_read | Initiate or continue a GATT Read using               |
|      |                                      | Characteristic UUID procedure                        |
| 0x96 | sd_ble_gattc_read                    | Initiate or continue a GATT Read (Long)              |
|      |                                      | Characteristic or Descriptor procedure               |
| 0x97 | sd_ble_gattc_char_values_read        | Initiate a GATT Read Multiple Characteristic Values  |
|      |                                      | procedure                                            |
| 0x98 | sd_ble_gattc_write                   | Perform a Write (Characteristic Value or Descriptor, |
|      |                                      | with or without response, signed or not, long or     |
|      |                                      | reliable) procedure                                  |
| 0x99 | sd_ble_gattc_hv_confirm              | Send a Handle Value Confirmation to the GATT         |
|      |                                      | Server                                               |
| 0xA0 | sd_ble_gatts_service_add             | Add a service declaration to the Attribute Table     |
| 0xA1 | sd_ble_gatts_include_add             | Add an include declaration to the Attribute Table    |
| 0xA2 | sd_ble_gatts_characteristic_add      | Add a characteristic declaration, a characteristic   |
|      |                                      | value declaration and optional characteristic        |
|      |                                      | descriptor declarations to the Attribute Table       |
| 0xA3 | sd_ble_gatts_descriptor_add          | Add a descriptor to the Attribute Table              |
| 0xA4 | sd_ble_gatts_value_set               | Set the value of a given attribute                   |
| 0xA5 | sd_ble_gatts_value_get               | Get the value of a given attribute                   |
| 0xA6 | sd_ble_gatts_hvx                     | Notify or Indicate an attribute value                |
| 0xA7 | sd_ble_gatts_service_changed         | Indicate the Service Changed attribute value         |
| 0xA8 | sd_ble_gatts_rw_authorize_reply      | Respond to a Read/Write authorization request        |
| 0xA9 | sd_ble_gatts_sys_attr_set            | Update persistent system attribute information       |
| 0xAA | sd_ble_gatts_sys_attr_get            | Retrieve persistent system attribute information     |
|      | · •                                  | from the stack                                       |
| 0xAB | sd_ble_gatts_initial_user_handle_get | Retrieve the first valid user attribute handle       |
| 0xAC | sd_ble_gatts_attr_get                | Retrieve the attribute UUID and/or metadata          |
| 0xB0 | sd_ble_l2cap_cid_register            | Register a CID with L2CAP                            |
| 0xB1 | sd_ble_l2cap_cid_unregister          | Unregister a CID with L2CAP                          |
| 0xB2 | sd_ble_l2cap_tx                      | Transmit an L2CAP packet                             |
|      |                                      | 1 -                                                  |

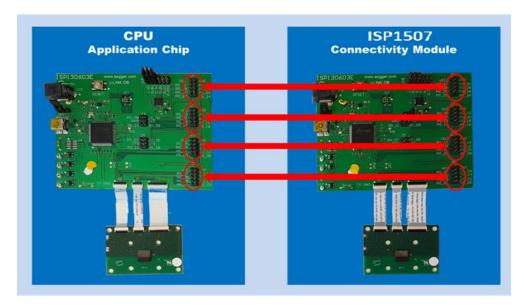
### 3.3. Event List

| Event Code                          | Description                                  |
|-------------------------------------|----------------------------------------------|
| 0x01 BLE_EVT_TX_COMPLETE            | Common BLE Event base. Transmission Complete |
| 0x02 BLE_EVT_USER_MEM_REQUEST       | User Memory request                          |
| 0x03 BLE_EVT_USER_MEM_RELEASE       | User Memory release                          |
| 0x10 BLE_GAP_EVT_CONNECTED          | GAP BLE Event base. Connection established   |
| 0x11 BLE_GAP_EVT_DISCONNECTED       | Disconnected from peer                       |
| 0x12 BLE_GAP_EVT_CONN_PARAM_UPDATE  | Connection Parameters updated                |
| 0x13 BLE_GAP_EVT_SEC_PARAMS_REQUEST | Request to provide security parameters       |
| 0x14 BLE_GAP_EVT_SEC_INFO_REQUEST   | Request to provide security information      |

April 29, 2019 Page 10/15 Document Ref: isp\_ble\_AN190401\_R0 .docx



| Event | : Code                                  | Description                                         |
|-------|-----------------------------------------|-----------------------------------------------------|
| 0x15  | BLE_GAP_EVT_PASSKEY_DISPLAY             | Request to display a passkey to the user            |
| 0x16  | BLE_GAP_EVT_KEY_PRESSED                 | Notification of a keypress on the remote device     |
| 0x17  | BLE_GAP_EVT_AUTH_KEY_REQUEST            | Request to provide an authentication key            |
| 0x18  | BLE_GAP_EVT_LESC_DHKEY_REQUEST          | Request to calculate an LE Secure Connections DHKey |
| 0x19  | BLE_GAP_EVT_AUTH_STATUS                 | Authentication procedure completed with status      |
| 0x1A  | BLE_GAP_EVT_CONN_SEC_UPDATE             | Connection security updated                         |
| 0x1B  | BLE_GAP_EVT_TIMEOUT                     | Timeout expired                                     |
| 0x1C  | BLE_GAP_EVT_RSSI_CHANGED                | RSSI report                                         |
| 0x1D  | BLE_GAP_EVT_ADV_REPORT                  | Advertising report                                  |
| 0x1E  | BLE_GAP_EVT_SEC_REQUEST                 | Security Request                                    |
| 0x1F  | BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST   | Connection Parameter Update Request                 |
| 0x20  | BLE_GAP_EVT_SCAN_REQ_REPORT             | Scan request report                                 |
| 0x30  | BLE_GATTC_EVT_PRIM_SRVC_DISC_RSP        | GATTC BLE Event base. Primary Service Discovery     |
|       |                                         | Response event                                      |
| 0x31  | BLE_GATTC_EVT_REL_DISC_RSP              | Relationship Discovery Response event               |
| 0x32  | BLE_GATTC_EVT_CHAR_DISC_RSP             | Characteristic Discovery Response event             |
| 0x33  | BLE_GATTC_EVT_DESC_DISC_RSP             | Descriptor Discovery Response event                 |
| 0x34  | BLE_GATTC_EVT_ATTR_INFO_DISC_RSP        | Attribute Information Response event                |
| 0x35  | BLE_GATTC_EVT_CHAR_VAL_BY_UUID_READ_RSP |                                                     |
| 0x36  | BLE_GATTC_EVT_READ_RSP                  | Read Response event                                 |
| 0x37  | BLE_GATTC_EVT_CHAR_VALS_READ_RSP        | Read multiple Response event                        |
| 0x38  | BLE_GATTC_EVT_WRITE_RSP                 | Write Response event                                |
| 0x39  | BLE_GATTC_EVT_HVX                       | Handle Value Notification or Indication event       |
| 0x3A  | BLE_GATTC_EVT_TIMEOUT                   | Timeout event                                       |
| 0x50  | BLE_GATTS_EVT_WRITE                     | GATTS BLE Event base. Write operation performed     |
| 0x51  | BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST      | Read/Write Authorization request                    |
| 0x52  | BLE_GATTS_EVT_SYS_ATTR_MISSING          | A persistent system attribute access is pending     |
| 0x53  | BLE_GATTS_EVT_HVC                       | Handle Value Confirmation                           |
| 0x54  | BLE_GATTS_EVT_SC_CONFIRM                | Service Changed Confirmation. No additional event   |
| -     |                                         | structure applies                                   |
| 0x55  | BLE_GATTS_EVT_TIMEOUT                   | Peer failed to respond to an ATT request in time    |
| 0x70  | BLE_L2CAP_EVT_RX                        | L2CAP BLE Event base. L2CAP packet received         |




### 4. Serialization Example

### 4.1. Hardware Setup

The serialization setup supports two physical transport interfaces for BLE: UART and SPI.

The following figure illustrates how to connect two test boards (with their interface board) as an application board and a connectivity board supplying an SPI or UART connection.



For SPI interface, connect all the following pins on the highlighted connectors:

```
GND ←→ GND
P0_12 ←→ P0_12
P0_24 (ISP1507-AX) // P0_20 (ISP1507-AL) ←→ P0_24 (ISP1507-AX) // P0_20 (ISP1507-AL)
P0_28 (ISP1507-AX) // P0_11 (ISP1507-AL) ←→ P0_28 (ISP1507-AX) // P0_11 (ISP1507-AL)
P0_29 (ISP1507-AX) // P0_04 (ISP1507-AL) ←→ P0_29 (ISP1507-AX) // P0_04 (ISP1507-AL)
P0_30 (ISP1507-AX) // P0_15 (ISP1507-AL) ←→ P0_30 (ISP1507-AX) // P0_15 (ISP1507-AL)
P0_06 (ISP1507-AX) // P0_17 (ISP1507-AL)
```

And on connectivity module only: connect P0\_26 (ISP1507-AX) // P0\_18 (ISP1507-AL) to VCC

• For UART interface, connect all the following pins on the highlighted connectors:

```
GND ←→ GND
P0_03 ←→ P0_03
P0_05 ←→ P0_05
P0_08 ←→ P0_08
P0_16 ←→ P0_16
```

And on connectivity module only: P0\_26 (ISP1507-AX) // P0\_18 (ISP1507-AL) to GND



### 4.2. Example with the ISP1507-AL with SPI Interface

### **Software Compliance**

The following example uses the nRF5 SDK v15.3.0 and the SoftDevice S132.

### **Connectivity Module Side**

Apply VCC to P0\_18 (for ISP1507-AL) pin SPI/nUART to select SPI mode.

### **Application Module Side**

The application module does not need a SoftDevice. Prepare the application module by performing the following steps:

- 1. Connect application module by performing the following steps.
- 2. In Keil, open one of the serialized example projects. The serialized version is located in the ser\_s132\_spi folder. Choose the example project for the same physical transport layer as on the connectivity board.

| Example                                                     | Physical transport layers |
|-------------------------------------------------------------|---------------------------|
| Alert Notification Application                              | UART, SPI,                |
| Beacon Transmitter Sample Application                       | UART, SPI                 |
| Blood Pressure Application                                  | UART, SPI                 |
| Cycling Speed and Cadence Application                       | UART, SPI                 |
| Glucose Application                                         | SPI                       |
| HID Keyboard Application                                    | SPI                       |
| Heart Rate Application                                      | SPI                       |
| Health Thermometer Application                              | UART, SPI                 |
| Power Profiling Application                                 | UART, SPI                 |
| Running Speed and Cadence Application                       | UART, SPI                 |
| Apple Notification Center Service (ANCS) Client Application | SPI                       |
| Direct Test Mode                                            | UART, SPI                 |
| BLE Heart Rate Collector Example                            | SPI                       |
| BLE Multi-link Example                                      | UART, SPI                 |

In this example, we choose the Heart Rate Application with SPI.



In this example the application board is an ISP1507-AL test board so we need to modify the board definition file to change the pinout.

```
#define SER_APP_SPIM0_SCK_PIN
                                        // SPI clock GPIO pin number.
                                   15
#define SER_APP_SPIM0_MOSI_PIN
                                        // SPI Master Out Slave In GPIO pin number
                                   04
#define SER_APP_SPIM0_MISO_PIN
                                        // SPI Master In Slave Out GPIO pin number
                                   11
                                        // SPI Slave Select GPIO pin number
#define SER APP SPIM0 SS PIN
                                   17
#define SER_APP_SPIM0_RDY_PIN
                                        // SPI READY GPIO pin number
                                   20
#define SER_APP_SPIM0_REQ_PIN
                                   12
                                        // SPI REQUEST GPIO pin number
```

Note: Normally the reset pin should also be configured (SER\_CONN\_CHIP\_RESET\_PIN). This pin should be connected to the SWDIO-nRESET pin of the connectivity module. We don't use it in this example.

4. Compile the application and download the created.hex file to the application module.

#### Verification

Power-up both modules at the same time. Check if you can connect with your smartphone using nRF Toolbox or nRF Connect) to the device called Nordic\_HRM.

### 4.3. Example with ISP1507-AL with UART Interface

### **Software Compliance**

The following example uses the nRF5 SDK v15.3.0 and the SoftDevice S132.

### **Connectivity Module Side**

Select UART mode by connecting P0\_18 pin SPI/nUART to GND.

#### **Application Module Side**

The application module does not need a SoftDevice. Prepare the application module by performing the following steps:

- 1. Connect application module by performing the following steps.
- In Keil, open one of the serialized example projects. The serialized version is located in the ser\_s132\_uart folder. Choose the example project for the same physical transport layer as on the connectivity board.



| Example                                                     | Physical transport layers |
|-------------------------------------------------------------|---------------------------|
| Alert Notification Application                              | UART, SPI                 |
| Beacon Transmitter Sample Application                       | UART, SPI                 |
| Blood Pressure Application                                  | UART, SPI                 |
| Cycling Speed and Cadence Application                       | UART, SPI                 |
| Glucose Application                                         | SPI                       |
| HID Keyboard Application                                    | SPI                       |
| Heart Rate Application                                      | SPI                       |
| Health Thermometer Application                              | UART, SPI                 |
| Power Profiling Application                                 | UART, SPI                 |
| Running Speed and Cadence Application                       | UART, SPI                 |
| Apple Notification Center Service (ANCS) Client Application | SPI                       |
| Direct Test Mode                                            | UART, SPI                 |
| BLE Heart Rate Collector Example                            | SPI                       |
| BLE Multi-link Example                                      | UART, SPI                 |

In this example, we choose the Heart Rate Application with UART.

3. In this example the application board is an ISP1507-AL test board so we need to modify the board definition file to change the pinout.

| #define SER_APP_RX_PIN  | 05 // UART RX pin number.              |
|-------------------------|----------------------------------------|
| #define SER_APP_TX_PIN  | 03 // UART TX pin number.              |
| #define SER_APP_CTS_PIN | 16 // UART Clear To Send pin number.   |
| #define SER_APP_RTS_PIN | 08 // UART Request To Send pin number. |

Note: Normally the reset pin should also be configured (SER\_CONN\_CHIP\_RESET\_PIN). This pin should be connected to the SWDIO-nRESET pin of the connectivity module. We don't use it in this example.

4. Compile the application and download the created.hex file to the application module.

### Verification

Power-up both modules at the same time. Check if you can connect with your smartphone using nRF Toolbox or nRF Connect) to the device called Nordic\_HRM.