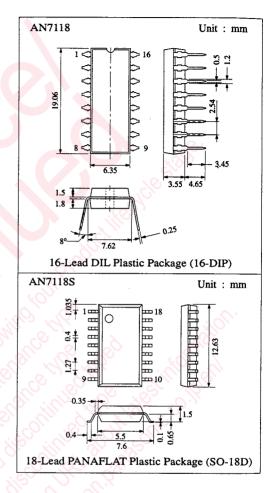
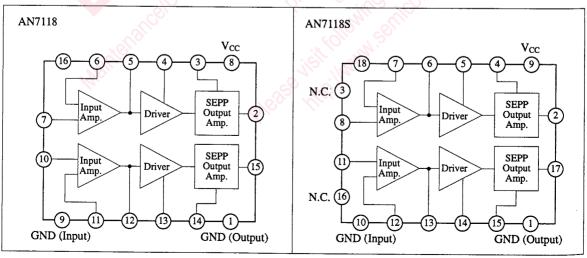
AN7118/S


Low Voltage Dual 35mW Audio Power Amplifier Circuits (BTL 300mW)

■ Description


The AN7118/S are the monolithic integrated circuits designed for low voltage dual 35mW audio power amplifier (BTL 300mW).

Features

- Low supply voltage operation: $V_{CC} = 1.8V \sim 4.5V$
- Reduced voltage operations is possible, making it suitable for the use of dry cells
- Low pop noise during switching ON and OFF of supply voltage
- With BTL connection, high output power is possible (Load 8Ω)
- Dual power operation is possible from a 4Ω load speaker to 32Ω headphones
- Input coupling capacitor is not necessary

Block Diagram

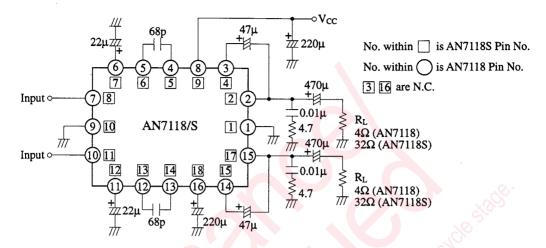
■ Absolute Maximum Ratings (Ta=25°C)

Item		Symbol	Rating	Unit	
Supply Voltage		V _{cc}	4.5	V	
Supply Current		I _{CC}	1	A	
Power Dissipation	AN7118	D_	900	mW	
	AN7118S	P _D	400		
Operating Ambient Temperature		Topr	-20 ~ +75	°C	
Storage Temperature		Tstg	-50 ~ +150	°C	

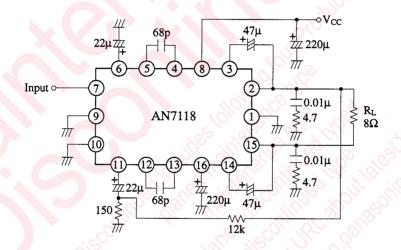
Operating Supply Voltage Range: $V_{CC} = 1.8V \sim 4.5V$

■ Electrical Characteristics (V_{CC}=3V, f=1kHz, Ta=25°C)

Item	Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
Quiescent Current	I_{CQ}	1	$V_{in} = 0mV$		13	18	mA
DUAL				.502			
Voltage Gain	Gv	1	$V_{in} = 1.5 \text{mV}, R_L = 4\Omega$	43	45	47	dB
Output Power 1	Po1	1	THD = 10%, $R_L = 4Ω \times 2 CH$	110	130		mW
Output Power 2	P _{O2}	1	THD = 10% , R _L = $32Ω \times 2$ CH		35		mW
Total Harmonic Distortion 1	THD ₁	1	$V_{in} = 1.5 \text{mV}, R_L = 4\Omega \times 2 \text{ CH}$		0.6	1.5	%
Total Harmonic Distortion 2	THD ₂	1	$V_{in} = 1.5 \text{mV}, R_L = 32\Omega \times 2 \text{ CH}$		0.3		%
Output Noise	V _{no}	1	$R_g = 10k\Omega$, DIN/AUDIO		0.3	0.8	mV
Input Resistance	R _{in}	1	110 ole of	0,0	20	11/10	kΩ
Ripple Rejection	RR	1	$f_r = 200 \text{mV}, f = 100 \text{Hz}$	6	35	0, 4	dB
BTL			Ille ille ice ico	-6)	3	10/10	
Output Power	Po	2	THD = 10% , $R_L = 8\Omega$	19/3	300	0.2	mW
Total Harmonic Distortion	THD	2	$V_{in} = 2mV, R_L = 8\Omega$		0.6		%

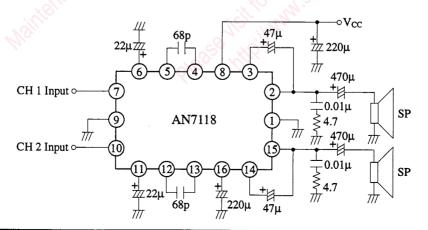

■ Pin (AN7118)

Pin No.	Pin Name		
1	GND (Output)		
2	Output Ch.1		
3	Bootstrap		
4	Phase Compensation		
5	Phase Compensation		
6	N.F.B.		
7	Input Ch.1		
8	V _{CC}		
9	GND (Input)		
10	Input Ch.2		
11	N.F.B.		
12	Phase Compensation		
13	Phase Compensation		
14	Bootstrap		
15	Output Ch.2		
. 16	Ripple Filter		

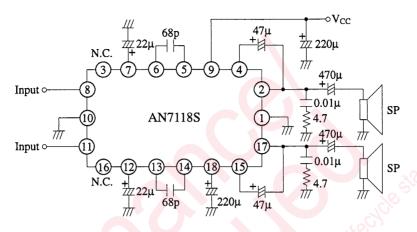

(AN7118S)

Pin No.	Pin Name		
	GND (Output)		
2	Output Ch.1		
3	N.C.		
4	Bootstrap		
5	Phase Compensation		
6	Phase Compensation		
7	N.F.B.		
8	Input Ch.1		
9	V _{CC}		
10	GND (Input)		
11	Input Ch.2		
12	N.F.B.		
13	Phase Compensation		
14	Phase Compensation		
15	Bootstrap		
16	N.C.		
17	Output Ch.2		
18	Ripple Filter		

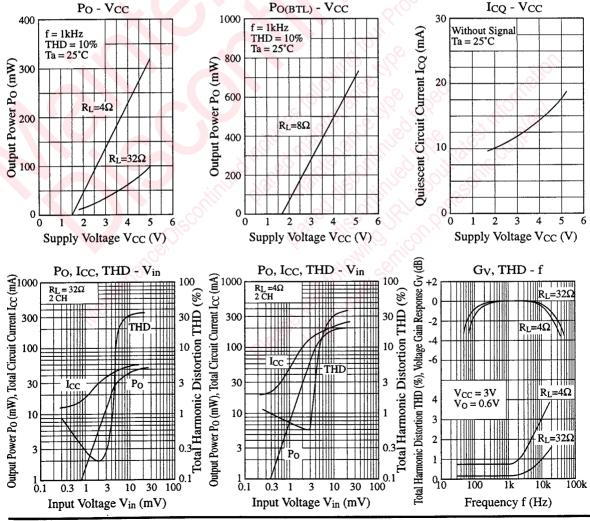
Test Circuit 1 (IcQ, Gv, Po1, Po2, THD1, THD2, Vno, Ri, RR)



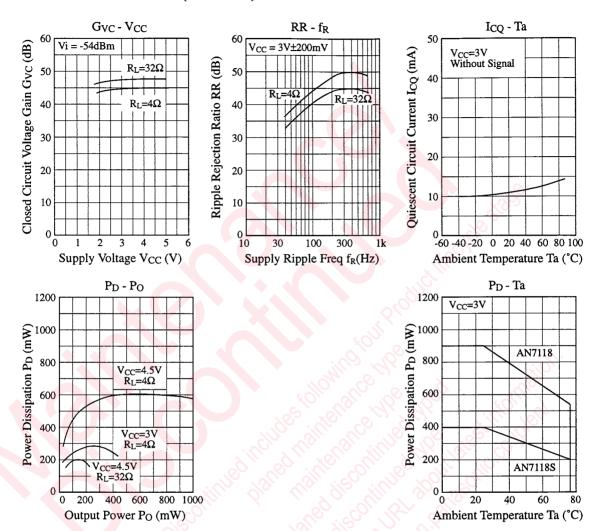
Test Circuit 2 (Po, THD)


Application Circuit

AN7118 Dual Circuit



■ Application Circuit (Continue)


AN7118S Dual Circuit

Characteristics Curve

■ Characteristics Curve (Continue)

■ Supplementary Explanation of IC Characteristics

- Not necessary for input coupling capacitor. Input electric potential is about 0 bias, using PNP Tr for input stage.
- One Chip dual amp. (Stereo operation).
- Battery operation at 1.8V~4.5V.
- Good decreased voltage operation suits a long battery operation.
- BTL connection by external circuit. High output (load 8Ω).
- Load impedance can be driven from 4Ω , which makes it possible to use for both speaker and headphone.
- Small shock noise at power ON and OFF.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20080805

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.