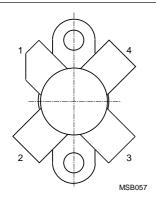
BLW83

DESCRIPTION

N-P-N silicon planar epitaxial transistor for use in transmitting amplifiers operating in the h.f. and v.h.f. bands, with a nominal supply voltage of 28 V. The transistor is specified for s.s.b. applications as linear amplifier in class-A and AB. The device is resistance stabilized and is guaranteed to withstand severe load mismatch conditions.

Matched h_{FE} groups are available on request.


It has a 3/8" flange envelope with a ceramic cap. All leads are isolated from the flange.

QUICK REFERENCE DATA

R.F. performance

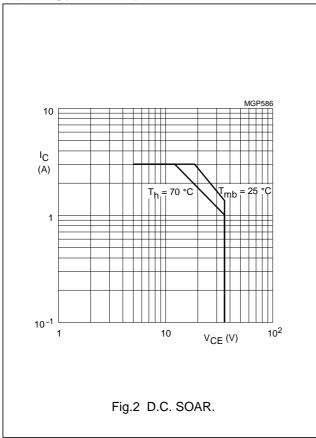
MODE OF OPERATION	VCE V	f MHz	P∟ W	G _p dB	η _{dt} %	Ic A	d₃ dB	T _h °C	
s.s.b. (class-A)	26	1,6 - 28	0 – 10 (P.E.P.)	> 20	_	1,35	< -40	70	
s.s.b. (class-AB)	28	1,6 - 28	3 – 30 (P.E.P.)	typ. 21	typ. 40	typ. 1,34	typ30	25	

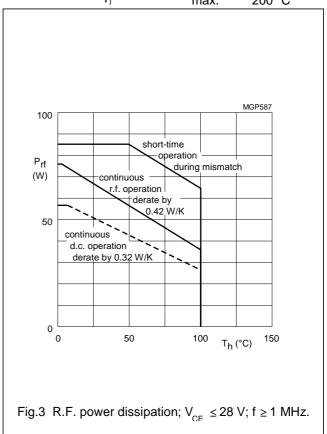
PIN CONFIGURATION

PINNING - SOT123

PIN	DESCRIPTION
1	collector
2	emitter
3	base
4	emitter

Fig.1 Simplified outlin

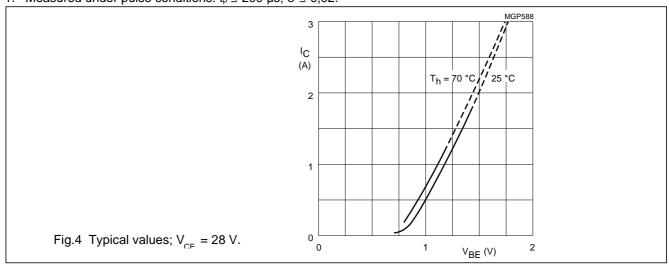

PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.


RATINGS

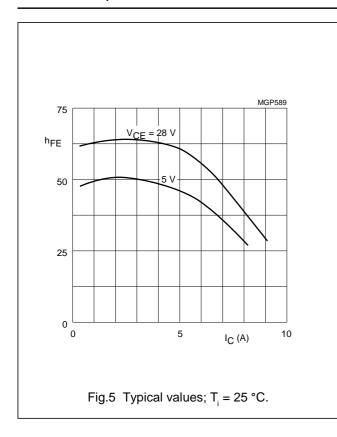
Limiting values in accordance with the Absolute Maximum System (IEC 134)

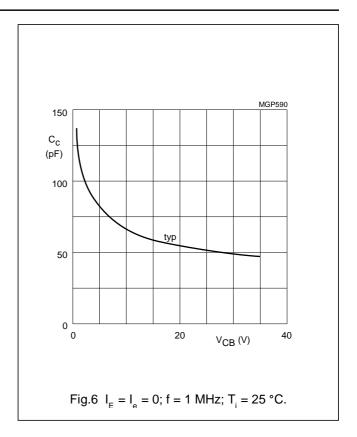
From junction to mounting base (d.c. dissipation) Rth j-mb(dc) = 3,15 K/W From junction to mounting base (r.f. dissipation) Rth j-mb(rf) = 2,35 K/W From mounting base to heatsink Rth mb-h = 0,3 K/W

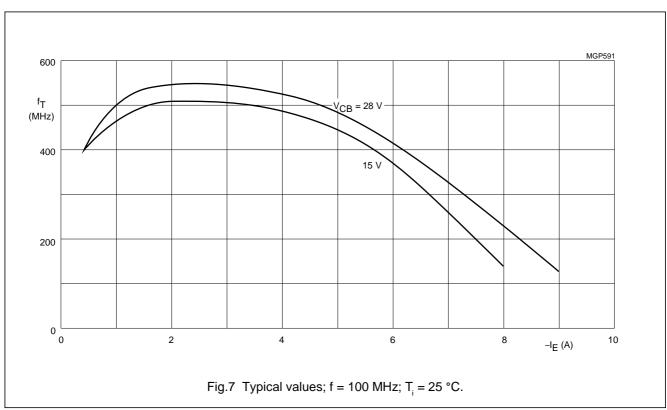
Collector-emitter voltage (V _{BE} = 0)			
peak value	Vcesm	max.	65 V
Collector-emitter voltage (open base)	Vceo	max.	36 V
Emitter-base voltage (open-collector)	VEBO	max.	4 V
Collector current (average)	IC(AV)	max.	3 A
Collector current (peak value); f > 1 MHz	Ісм	max.	9 A
R.F. power dissipation (f > 1 MHz); T _{mb} = 25 °C	P_{rf}	max.	76 W
Storage temperature	Tstg	-65 to	+ 150 °C
Operating junction temperature	Tj	max.	200 °C


THERMAL RESISTANCE

(dissipation = 35 W; T_{mb} = 80 °C, i.e. T_h = 70 °C)


BLW83

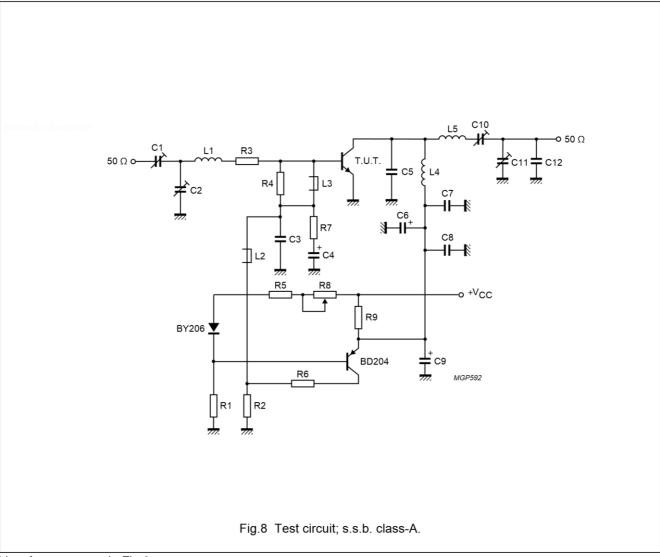

CHARACTERISTICS			
$T_j = 25$ °C unless otherwise specified			
Collector-emitter breakdown voltage			
V _{BE} = 0; I _C = 10 mA	V(BR)CES	>	65 V
Collector-emitter breakdown voltage open base; $I_c = 50 \text{ mA}$	V(BR)CEO	>	36 V
Emitter-base breakdown voltage			
open collector; I _E = 10 mA	$V_{(BR)EBO}$	>	4 V
Collector cut-off current			
$V_{BE} = 0$; $V_{CE} = 36 \text{ V}$	Ices	<	4 mA
Second breakdown energy; L = 25 mH; f = 50 Hz			
open base	Esbo	>	8 mJ
$R_{BE} = 10 \Omega$	Esbr	>	8 mJ
D.C. current gain (1)		typ.	50
Ic = 1,25 A; V _{CE} = 5 V	hFE	10	to 100
D.C. current gain ratio of matched devices ⁽¹⁾			
$I_C = 1,25 A; V_{CE} = 5 V$	h _{FE1} /hFE2	<	1,2
Collector-emitter saturation voltage ⁽¹⁾			
$I_C = 3,75 \text{ A}; I_B = 0,75 \text{ A}$	VCEsat	typ.	1,5 V
Transition frequency at f = 100 MHz ⁽¹⁾			
$-I_E = 1,25 \text{ A}; V_{CB} = 28 \text{ V}$	fτ	typ.	530 MHz
$-I_E = 3,75 \text{ A}; V_{CB} = 28 \text{ V}$	fτ	typ.	530 MHz
Collector capacitance at f = 1 MHz			
$I_E = I_e = 0$; $V_{CB} = 28 \text{ V}$	C_c	typ.	50 pF
Feedback capacitance at f = 1 MHz			
$I_C = 100 \text{ mA}; V_{CE} = 28 \text{ V}$	Cre	typ.	31 pF
Collector-flange capacitance Note	C_{cf}	typ.	2 pF


1. Measured under pulse conditions: $t_p \le 200 \ \mu s; \ \delta \le 0.02$.

BLW83

BLW83

APPLICATION INFORMATION


R.F. performance in s.s.b. class-A operation (linear power amplifier)

 $V_{CE} = 26 \text{ V}; f_1 = 28,000 \text{ MHz}; f_2 = 28,001 \text{ MHz}$

OUTPUT POWER W	G _p dB	lc A	d ₃ dB (1)	d ₅ dB (1)	T _h °C
> 10 (P.E.P.)	> 20	1,35	-40	< -40	70
typ. 11 (P.E.P.) typ. 12 (P.E.P.)	typ. 24	1,35	-40	< -40	25

Note

1. Stated intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB.

List of components in Fig.8:

C1 = C2 = 10 to 780 pF film dielectric trimmer

C3 = 22 nF ceramic capacitor (63 V)

BLW83

C4 = $47 \mu F/10 V$ electrolytic capacitor

C5 = 56 pF ceramic capacitor (500 V)

C6 = $47 \mu F/35 V$ electrolytic capacitor

C7 = C8 = 220 nF polyester capacitor

C9 = $10 \mu F/35 V$ electrolytic capacitor

C10 = C11 = 7 to 100 pF film dielectric trimmer

C12 = 82 pF ceramic capacitor (500 V)

L1 = 3 turns closely wound enamelled Cu wire (1,6 mm); int. dia. 9,0 mm; leads to 2 × 5 mm

L2 = L3 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)

L4 = 11 turns closely wound enamelled Cu wire (1,6 mm); int. dia. 11,0 mm

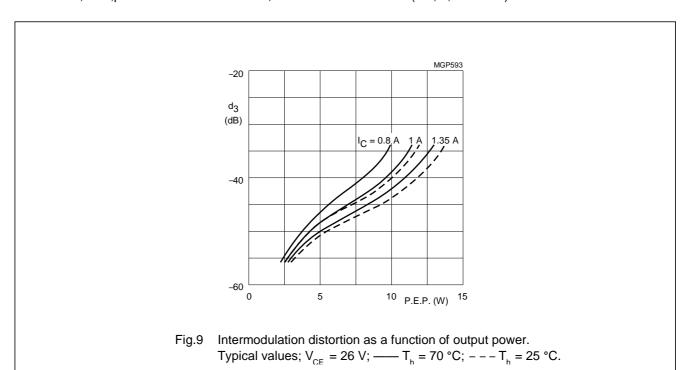
L5 = 14 turns closely wound enamelled Cu wire (1,6 mm); int. dia. 11,0 mm

R1 = 600 Ω ; parallel connection of 2 × 1,2 k Ω carbon resistors (±5%; 0,5 W each)

R2 = 15Ω carbon resistor ($\pm 5\%$; 0,25 W)

R3 = 1,2 Ω ; parallel connection of 4 × 4,7 Ω carbon resistors (±5%; 0,125 W each)

R4 = 33 Ω carbon resistor (\pm 5%; 0,25 W)


R5 = 18Ω carbon resistor ($\pm 5\%$; 0,25 W)

R6 = 120Ω wirewound resistor ($\pm 5\%$; 5,5 W)

R7 = 1Ω carbon resistor (±5%; 0,125 W)

R8 = 47Ω wirewound potentiometer (3 W)

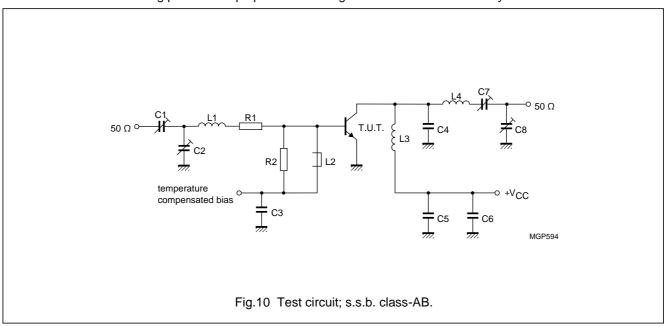
R9 = 1,57 Ω ; parallel connection of 3 \times 4,7 Ω wirewound resistors (5%; 5,5 W each)

R.F. performance in s.s.b. class-AB operation (linear power amplifier)

 $V_{CE} = 28 \text{ V}; f_1 = 28,000 \text{ MHz}; f_2 = 28,001 \text{ MHz}$

OUTPUT POWER G_P η_{dt} (%) I_C (A) d_3 d_5 I_{C} (ZS) I_h

Philips Semiconductors Product specification


HF/VHF power transistor

BLW83

w	dB	at 30 W P.E.P.		at 30 W P.E.P.		dB (1)	dB (1)	mA	°C
3 to 30 (P.E.P.)	typ. 21	typ. 40	typ. 1,34	typ30	< -30	25	25		
3 to 25 (P.E.P.)	typ. 21	-	-	typ30	< -30	25	70		

Note

1. Stated intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB.

List of components:

C1 = C2 = 10 to 780 pF film dielectric trimmer

C3 = C5 = C6 = 220 nF polyester capacitor

C4 = 56 pF ceramic capacitor (500 V)

C7 = C8 = 15 to 575 pF film dielectric trimmer

L1 = 4 turns closely wound enamelled Cu wire (1,6 mm); int. dia. 7,0 mm; leads 2 × 5 mm

L2 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)

L3 = 4 turns enamelled Cu wire (1,6 mm); int. dia. 10 mm; length 9,4 mm; leads 2 × 5 mm

L4 = 7 turns enamelled Cu wire (1,6 mm); int. dia. 12 mm; length 17,2 mm; leads 2 × 5 mm

R1 = $1,2 \Omega$; parallel connection of $4 \times 4,7 \Omega$ carbon resistors

R2 = 39Ω carbon resistor

Figs 13 and 14 are typical curves and hold for an unneutralized amplifier in s.s.b. class-AB operation.

Philips Semiconductors Product specification

HF/VHF power transistor

Ruggedness in s.s.b. operation

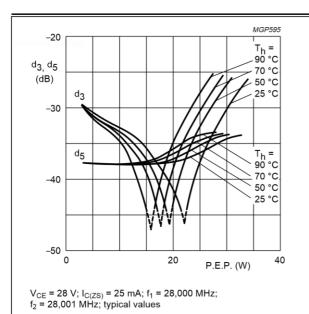


Fig.11 Intermodulation distortion as a function of output power. (1)

BLW83

 $f_1 = 28,000$ MHz; $f_2 = 28,001$ MHz; $V_{CE} = 28$ V; $T_h = 70$ °C and $P_{Lnom} = 35$ W (P.E.P.).

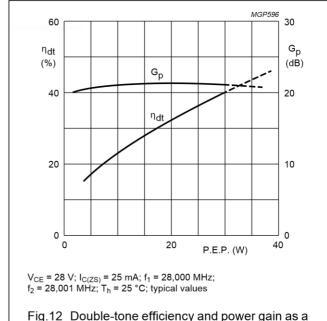
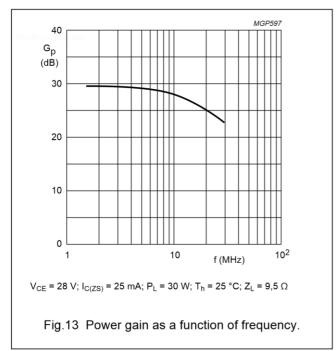
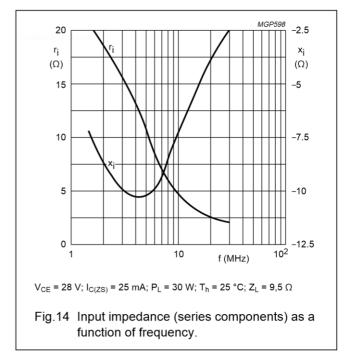
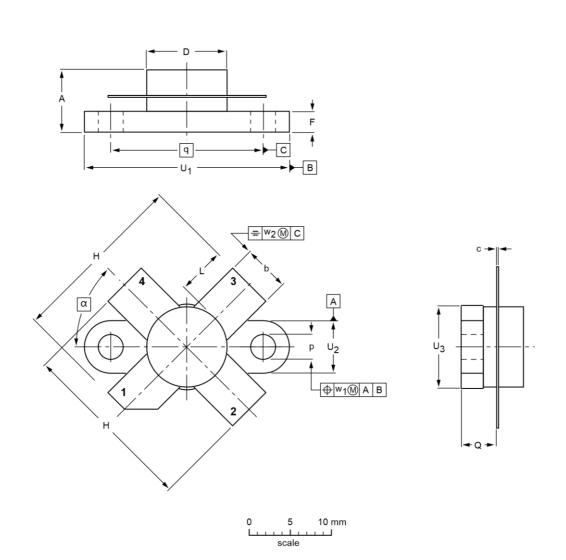




Fig.12 Double-tone efficiency and power gain as a function of output power.

The BLW83 is capable of withstanding a load mismatch (VSWR = 50) under the following conditions:


PACKAGE OUTLINE

BLW83

Flanged ceramic package; 2 mounting holes; 4 leads

SOT123A

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	Α	b	С	D	D ₁	F	н	L	р	Q	q	U ₁	U ₂	U ₃	w ₁	w ₂	α
mm	7.47 6.37	5.82 5.56	0.18 0.10	9.73 9.47					3.33 3.04	4.63 4.11	18.42	25.15 24.38	6.61 6.09	9.78 9.39	0.51	1.02	45°
inches	0.294 0.251	0.229 0.219		0.383 0.373			0.815 0.785					0.99 0.96	0.26 0.24	0.385 0.370	0.02	0.04	40

OUTLINE			REFER	RENCES	EUROPEAN ISSUE DATE			
VERSION	1	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE		
SOT123A	4					97-06-28		

Philips Semiconductors Product specification

HF/VHF power transistor

BLW83

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.