
© Motorola, Inc., 2003

AN2140/D
Rev. 1, 6/2003

Serial Monitor for
MC9S08GB/GT

Application Note

By Jim Sibigtroth
8/16 Bit Systems/Applications Engineering
Austin, Texas

Introduction

This application note describes a 1-Kbyte monitor program for the
MC9S08GB60 MCU. This program supports 19 primitive debug commands to
allow FLASH programming and debug through an RS-232 serial interface to a
personal computer. This monitor supports primitive commands to reset the
target MCU, read or modify memory (including FLASH memory), read or
modify CPU registers, go, halt, or trace single instructions. In order to allow a
user to specify the address of each interrupt service routine, this monitor
enables a hardware logic feature that redirects interrupt vectors to an
unprotected portion of FLASH just before the protected monitor program. This
monitor will be modified for use with other members of the HCS08 Family as
they are introduced.

A user on a tight budget can evaluate the MCU by writing programs,
programming them into the MCU, and debugging their applications for the
HCS08 using only a serial I/O cable and free software for their personal
computer. This monitor does not use any RAM other than the stack itself.

The monitor turns off the COP watchdog. This development environment
assumes you reset to the monitor when you are going to perform debug
operations. If your code takes control directly from reset, and then an SCI1
interrupt or software interrupt (SWI) attempts to enter the monitor, the monitor
may not function because the SCI, frequency-locked loop (FLL), FCLK, and
COP may not be initialized as they would be for a cold reset into the monitor.

There is limited error handling for the FLL. If the frequency source is missing or
broken, the monitor will not function. The crystal oscillator can take any amount
of time to start. If the FLL loses clocks after the monitor is running, a reset is
forced. If the FLL loses lock during operation, it may or may not fail — if it can
regain lock, it can continue normally. If a user interrupt service routine (ISR) is
present, the monitor uses that routine. If there is no user ISR, the monitor ICG

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

2 Serial Monitor for MC9S08GB/GT MOTOROLA

ISR acknowledges the error and does a real-time interrupt (RTI). If the loss of
lock was due to noise, the monitor would resume normal operation. If there was
a more serious problem such as a broken FLL, the monitor would stop working.
Normally, interrupts are blocked while the monitor has control so this ISR is
really just included for the case where a user clears I in their code and then the
ICG experiences a loss of lock. (This reduces the risk that an ICG failure would
lock up the user’s application.)

Block Protection

In order to prevent accidental changes to the monitor program itself, the
1 Kbyte block of FLASH memory where it resides ($FC00–$FFFF), is block
protected. The only way to change the contents of this protected block, is to use
a BDM-based development tool (a BDM pod) to disable the block protection
and then bulk erase the FLASH memory (or at least the last two 512-byte
pages).

In the lowest-cost applications where the monitor is used with an SCI serial
interface to the RS-232 serial port on a personal computer, there is no way to
accidentally erase or modify the monitor software. Not even errors in a user
program can cause changes to the monitor because the block protect can only
be disengaged through a BDM command with a BDM-based debug pod.

Baud Rate Detection

The MC9S08GB60 version of this monitor assumes a 32.768-kHz crystal. It
programs the FLL to produce a bus frequency of 18.874368 MHz and
accommodates RS-232 serial communications through SCI1 at 115.2 kbaud.
The monitor does not attempt to allow debugging of a user program that uses
a different crystal frequency or sets up the FLL differently. For such systems,
you should purchase a BDM pod which allows more sophisticated debugging.

Other variations of the monitor will use the internal oscillator on some HCS08
derivatives and/or other combinations of crystals and FLL settings. However,
they will all send a break and wait for a carriage return before sending the first
prompt sequence. In a later section of this application note, the parameters and
control register settings that are related to the oscillator, FLL, and other
frequency-sensitive features of the monitor will be discussed in greater detail.

During initialization after any cold reset, a long break is transmitted before other
SCI communications. This break is about 30 bit-times to ensure that a
Windows-based PC can recognize this as a break. In order to establish
communications with the monitor, the host must send a carriage return ($0D)
at the correct baud rate. If the monitor detects some other character, it implies

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
Monitor Commands

MOTOROLA Serial Monitor for MC9S08GB/GT 3

the host baud rate is not correct so it continues to wait in a loop for the $0D
character before printing the first prompt sequence.

The host can detect the monitor baud rate by initially sending a carriage return
at 115.2 kbaud. If this is the correct baud rate, the target MCU will respond with
a prompt sequence of $E0, $08, and a ">" prompt character. If the host does
not see the prompt sequence, it should try sending another carriage return at
57.6 kbaud, then 38.4 kbaud, then 19.2 kbaud, and finally 9600 baud, until the
prompt sequence is received to indicate the correct communication rate.

Monitor Commands

The monitor recognizes 19 primitive binary commands that enable a third-party
development tool vendor to develop a full-featured debug program. These
commands use 8-bit command codes optionally followed by binary addresses,
control, and data information depending upon the specific command.

In the following command descriptions, a shorthand notation is used to
describe the command syntax. Each command starts with a binary command
code. A slash (/) is used to separate parts of the command in these
descriptions, but these slash characters are not sent as serial characters in
commands. Underlined parts of the command are transmitted from the host PC
to the target MCU while the portions that are not underlined are transmitted
from the target MCU to the host PC.

The first two characters in each command sequence are the 1-byte command
codes and are shown as a literal hexadecimal value such as A1. Other
abbreviations used in the command sequences are shown here:

AA — The contents of the 8-bit accumulator

AAAA — A 16-bit address

CC — The contents of the 8-bit condition codes register

EADR — The 16-bit end address for an erase command

HH — The contents of the 8-bit H register (high half of H:X)

NN — The number of bytes (–1) for the block read and write commands

PH — The upper 8-bits of the user’s program counter (PCH)

PL — The lower 8-bits of the user’s program counter (PCL)

RD — One byte of read data

RD(AAAA)/RD(AAAA+1)/.../RD(AAAA+NN) — A series of 8-bit read data values from
address locations AAAA through AAAA+NN.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

4 Serial Monitor for MC9S08GB/GT MOTOROLA

SADR — The 16-bit start address for an erase command

SH — The upper 8-bits of the user’s stack pointer (SPH)

SL — The lower 8-bits of the user’s stack pointer (SPL)

WD — One byte of write data

WD(AAAA)/WD(AAAA+1)/.../WD(AAAA+NN) — A series of 8-bit write data values for
address locations AAAA through AAAA+NN.

XX — The contents of the 8-bit index register X (low half of H:X)

Some monitor commands such as Read_Byte and Write_Byte can be executed
at any time while others may only be executed while the monitor is active and
waiting for commands (as opposed to running user code). Commands such as
those that write to CPU registers would not make sense while user code is
running because they would result in unexpected program execution. If these
commands are attempted while user code is running, the command will not be
executed and an error message will be returned to the host system as part of
the next prompt sequence. Unless otherwise noted in the following command
descriptions, the command can be executed at any time (while the monitor is
active or while a user program is running).

$A1 — Read_Byte A1/AAAA/RD — Reads a byte of data from the specified 16-bit address and
sends the 8-bit data back to the host PC.

$A2 — Write_Byte A2/AAAA/WD — Writes the supplied byte of data to the specified 16-bit
address. All writes are processed through an intelligent routine that programs
FLASH or writes to RAM or registers based on the address being written. If any
error occurs during an attempt to program a nonvolatile memory location, an
error code is transmitted before a new prompt is issued. See Intelligent Writes
for more detail.

$A5 — Read_Next A5/RD — Pre-increments the user H:X register (by 1), reads the byte of data
from 0,X, and sends the 8-bit data back to the host PC. This command is not
allowed when the user program is running because the monitor cannot control
the contents of the H:X index register.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
Monitor Commands

MOTOROLA Serial Monitor for MC9S08GB/GT 5

$A6 — Write_Next A6/WD — Pre-increments the user H:X register (by 1) and writes the supplied
byte of data to 0,X. All writes are processed through an intelligent routine that
programs FLASH or writes to RAM or registers based on the address being
written. If any error occurs during an attempt to program a nonvolatile memory
location, an error code is transmitted before a new prompt is issued. See
Intelligent Writes for more detail. This command is not allowed when the user
program is running.

$A7 — Read_Block A7/AAAA/NN/RD(AAAA)/RD(AAAA+1)/.../RD(AAAA+NN) — Reads a series of
NN+1 (1 to 256) bytes of data starting at address AAAA and returns the data
one byte at a time to the host (starting with the data read from address AAAA
and ending with the data from address AAAA+NN). Although this command
can be executed while a user program is running, it is not usually
recommended because it could slow down operation of the user program.

$A8 — Write_Block A8/AAAA/NN/WD(AAAA)/WD(AAAA+1)/.../WD(AAAA+NN) — Writes a series of
NN+1 (1 to 256) bytes of data into the target MCU’s memory starting at address
AAAA and ending with address AAAA+NN. All writes are processed through an
intelligent routine that programs FLASH or writes to RAM or registers based on
the address being written. If any error occurs during an attempt to program a
nonvolatile memory location, an error code is transmitted before a new prompt
is issued. See Intelligent Writes for more detail. This command is capable of
programming locations in FLASH memory even while a user program is
running from within the same FLASH memory. Although this command can be
executed while a user program is running, it is not usually recommended
because it could slow down operation of the user program.

$A9 — Read_Regs A9/SH/SL/PH/PL/HH/XX/CC/AA — Sends the current contents of user
registers SPH, SPL, PCH, PCL, H, X, CCR, A (in that order) to the host PC. The
SP value is the user SP value and while the monitor is active and waiting for
commands, the real SP is 6 less due to the user register stack frame. Although
this command can be executed while a user program is running, it is not usually
recommended because these register values change much more quickly than
they can be read.

$AA — Write_SP AA/SH/SL — Adjusts the specified 16-bit data to compensate for the user
register stack frame (–6) and writes this adjusted value to the stack pointer
register. The monitor uses stack space below the user register stack frame.
When you execute a Go or Trace1 command, the monitor exits to the user
program by pulling H and then executing an RTI instruction. Because of the
monitor requirements for stack space, the valid range of values for SP in the
Write_SP command is from RamStart+$45 to RamLast.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

6 Serial Monitor for MC9S08GB/GT MOTOROLA

The monitor doesn’t move the user register values to the new user register
stack frame so the host should re-write all user register values after changing
the SP value, and before attempting to display current user register values.
This command is not allowed when the user program is running. The first AA in
this command sequence is the Write_SP command code.

$AB — Write_PC AB/PH/PL — Writes the specified 16-bit data to PCH:PCL in the user register
stack frame. This command is not allowed when the user program is running.

$AD — Write_HX AD/HH/XX — Writes the specified 16-bit data to the H:X index register pair in
the user register stack frame. This command is not allowed when the user
program is running.

$AE — Write_A AE/AA — Writes the specified 8-bit data to accumulator A in the user register
stack frame. This command is not allowed when the user program is running.

$AF — Write_CCR AF/CC — Writes the specified 8-bit data to the condition codes register (CCR)
in the user register stack frame. This command is not allowed when the user
program is running.

$B1 — Go B1 — The monitor pulls H then executes an RTI to copy user CPU register
values from user register stack frame into the actual CPU registers. Processing
resumes in the user program at the location specified by the user program
counter that was in the user register stack frame. To go to an arbitrary address
in the user’s program, you can first use a Write_PC command to set the user’s
program counter to a new location.

In run mode, the user’s application program will execute until it is interrupted by
a breakpoint, an SCI1 interrupt, or a Halt command. In the case of a breakpoint
or Halt command, the monitor will clear the run mode flag to indicate to the
monitor that it should remain active waiting for further commands from the host.
In the case of an SCI1 interrupt, the run flag is set (or remains set) to indicate
that the monitor should return to the user’s application program after
completing the current command.

Since the monitor requires the SWI and SCI1 interrupt vectors to be
programmed with specific values, the Go and Trace1 commands perform a
check to make sure these vectors are good before exiting the monitor to run
user code. If the vector locations are erased ($FF), the verification routine tries
to program the correct values into the FLASH vector locations. If this is
successful, or if the vectors were already correct, the monitor finishes with a Go
or Trace1 command. If the vectors cannot be programmed correctly, the

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
Monitor Commands

MOTOROLA Serial Monitor for MC9S08GB/GT 7

monitor aborts the Go or Trace1 command and reports the error with the next
prompt sequence.

If the Go command is executed while a user program is running, control returns
to the running user program.

$B2 — Trace1 B2 — The monitor sets up the on-chip debug module to force a CPU breakpoint
immediately after executing a single instruction in the user’s program. It then
pulls the H register and executes an RTI to copy user CPU register values from
user register stack frame into the actual CPU registers. Processing resumes in
the user program at the location specified by the user program counter that was
in the user register stack frame.

After executing a single user instruction, an SWI is forced to cause control to
return to the monitor program. In response to the SWI, the monitor clears the
run flag (or leaves it cleared) to indicate that the monitor should remain active
waiting for additional commands from the host.

Since the monitor requires the SWI and SCI1 interrupt vectors to be
programmed with specific values, the Go and Trace1 commands perform a
check to make sure these vectors are good before exiting the monitor to run
user code. If the vector locations are erased ($FF), the verification routine tries
to program the correct values into the FLASH vector locations. If this is
successful, or if the vectors were already correct, the monitor finishes with a Go
or Trace1 command. If the vectors cannot be programmed correctly, the
monitor aborts the Go or Trace1 command and reports the error with the next
prompt sequence.

If the Trace1 command is executed while a user program is running, one
additional user program instruction will be executed and then the monitor will
become active and wait for additional commands.

$B3 — Halt B3 — This command is used to force the user’s application program to stop
executing and the monitor to gain control and remain active to wait for
additional commands from the host. This command requires an enabled SCI1
interrupt so it can only be recognized if the user application program has
cleared the I bit in the CCR. If the user program temporarily blocks interrupts,
such as during execution of another interrupt service routine, the Halt
command will not be recognized until the user application program re-enables
interrupts (typically by executing the RTI at the end of an interrupt service
routine).

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

8 Serial Monitor for MC9S08GB/GT MOTOROLA

$B4 — Reset B4 — If there is a programmed user reset vector, the level on the user/monitor
switch (PTA7 in the MC9S08GB60), and the level on the RxD1 line; this will
cause a reset to user code or to the monitor. The sequence of checks at reset
include:

1. Check for possible stop2 mode recovery (indicated when the PPDF bit
in SPMSC2 register is 1). If PPDF = 1, the MCU pins remain latched to
the states whey had when stop2 mode was entered. Control is passed
to the user’s reset initialization code so pin and peripheral states can be
reconfigured before PPDACK is written to restore I/O pins to normal
operation.

2. Check for warm start (which implies reset was caused by an SCI1 Rx
interrupt or a break in the user code (SWI) where the SP was not valid
in the interrupt service routine.) A warm start is indicated when all of the
following conditions are true...

a. SRS register indicates reset was caused by an illegal opcode
b. A 16-bit signature at RamLast – 3 = warmSig
c. The old saved baud rate at RamLast matches the normal baud rate

setting for the monitor (baud115200 in the MC9S08GB60)

Warm start skips the long break and restores the previous baud rate instead of
waiting for the next carriage return. The warm reset is needed in the case of an
SCI1 Rx interrupt or SWI with an invalid SP value because the interrupt
stacking could have corrupted RAM or register values and because the monitor
cannot function without a valid stack.

3. If the user/monitor switch (PTA7 in the MC9S08GB60) = 0 (logic low),
force monitor reset

4. If RxD1 = 0 (logic low) force monitor reset. If no RS-232 device is
connected, or if RxD is being driven by an idle level, RxD1 will be 1 so
monitor mode is not selected.

5. If the first byte of the user reset pseudo-vector = $FF (unprogrammed)
force monitor reset

If none of the above, use the reset pseudo-vector to jump to the user’s reset
startup routine. Two pullup enable registers are modified during the monitor
startup, but they are restored to their reset values before going to the user reset
location. The user has complete control over all control registers (including
write-once registers and bits) as if the user's reset routine had started
immediately after the actual reset.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
Command Error Codes

MOTOROLA Serial Monitor for MC9S08GB/GT 9

$B5 — Erase B5/SADR/EADR — Erase pages of FLASH memory starting with the FLASH
page that includes address SADR and ending with the FLASH page that
includes address EADR. SADR and EADR must specify a valid range of
addresses in FLASH memory. Before checking for a valid FLASH address
range (in the MC9S08GB60), the low order half of SADR is forced to $80 and
the low order half of EADR is forced to $FF. Multi-page erase commands are
accomplished by starting with a page address of SADR (after modification) and
repeating a loop that erases one page of FLASH memory, adds $200 (512) to
the page address, and repeats the loop until the page address is past the
address EADR (after modification). This unusual algorithm prevents any
possibility of unintended changes to high-page registers in case the range of
FLASH addresses being erased overlaps the high-page register space from
$1800–$182B and prevents the possibility that the starting address would fall
in the inaccessible portion of the first FLASH page ($1000–$107F) where
internal RAM takes priority over the FLASH memory.

$B6 — Erase_All B6 — Erase all FLASH memory except the 1-Kbyte monitor at $FC00–$FFFF.
If this command is issued while an application program is running, the run flag
is cleared so the monitor retains control after the FLASH memory is erased.

$B7 — Device_Info B7 — Returns the HCS08 device revision and ID code followed by a normal
prompt sequence. In HCS08 devices, the information for the mask revision and
device ID comes from the system device identification register (SDIDH:SDIDL)
at $1806:$1807 which contains a 4-bit revision number and a 12-bit device
identification code. For the original MC9S08GB60, this code is $0:$002, so the
complete response to the $B7 Device_Info command is: $00, $02, $E0, $00 (or
$01 if a user program is running), $3E (the prompt symbol “>”).

Command Error Codes

A 3-character prompt is issued after monitor initialization and after each
command is completed. A prompt is not issued after a Go command until a
breakpoint is encountered or a Halt command stops execution of the user’s
application program. The prompt sequence consists of a 1-byte error code, a
1-byte status code, and a ‘>’ prompt symbol ($3E). After initialization or after a
command is executed successfully, the error code is $E0 indicating no error.
After a cold reset initialization, the status code is $08 indicating a hard reset has
occurred and the monitor is in active monitor mode waiting for additional
commands from the host. Therefore the complete 3-character prompt after a
cold reset is $E0, $08, $3E.

Some commands are not allowed while the target MCU is in run mode because
they would interfere with proper execution of the application program (see error

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

10 Serial Monitor for MC9S08GB/GT MOTOROLA

code $E2). In addition, other commands are not recommended while the target
MCU is in run mode, but since these commands do not interfere with proper
execution of the application program, other than to slow it down, they are
allowed to execute and do not result in an error.

The following paragraphs describe each of the possible error codes in more
detail.

$E0 — No Error This code is used after any successful command. It indicates there are no
pending errors.

$E1 — Command
not recognized

This code indicates the previous command code was not one of the recognized
command codes. If the monitor was in run mode, control returns to the user’s
application program. If the monitor was not in run mode, control returns to the
top of the command loop to wait for the next command from the host.

$E2 — Command
not allowed in Run
Mode

This code indicates that the requested command is only legal when the monitor
is halted (active monitor mode). In the case of a command request that is not
legal in run mode, the command is not executed to avoid corrupting the running
user application program. The commands that are not allowed in run mode are:

• Read_Next and Write_Next are not allowed because these commands
use the user’s H:X register value as a pointer and this value constantly
changes during run mode.

• Write_SP, Write_PC, Write_HX, Write_A, and Write_CCR are not
allowed in run mode because they change much faster than the host
could check their contents. Therefore there is no way to predict how
these changes would affect the application program so it would not
make sense to execute these commands while the application program
is running.

Although commands that write to memory or erase FLASH memory
(Write_Byte, Write_Block, Erase, or Erase_All) are allowed while running a
user program, care should be used to avoid changing the program itself while
it is executing.

$E3 — Stack Pointer
Out of Range

This error code indicates that when the monitor program took over control from
a running user program, the stack pointer was not pointing to a valid RAM
location. This is an unrecoverable error because the interrupt that caused the
monitor to gain control wrote to several memory locations above the current
invalid stack pointer location. If the stack pointer was pointing into the on-chip
registers, this could have corrupted important system configuration settings. In
addition, the user PC value may not have been written to a read/write location
so the monitor would not know where to return to the user program.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
Command Error Codes

MOTOROLA Serial Monitor for MC9S08GB/GT 11

Since the monitor requires certain control register settings and a valid stack to
function correctly, a bad SP error results in the monitor forcing a reset to restore
required settings. Most of the time, this can be a warm reset that skips the long
break and the checks for going directly to the user reset vector. After the warm
reset, clocks and control registers are initialized and the prompt will include the
bad SP error message and the warm start status code ($E3, $0C, $3E).

A warm reset is also forced if the monitor gets an unexpected interrupt from the
SCI1 Tx or Error interrupt sources. If the user program has experienced code
runaway and has changed the SCI1 control registers to allow these interrupts,
the safest response is to force a (warm) reset to allow the monitor to regain
control.

$E4 — Write_SP
Attempted with an
Invalid SP value

This error code indicates that the host attempted a Write_SP command with an
invalid 16-bit SP value. In order for the monitor program to function correctly,
the SP must always point into a valid area of RAM to support monitor functions.
The Write_SP command adjusts the supplied SP value (by subtracting 6) to
compensate for the user register stack frame. In addition the monitor needs a
certain amount of stack space for stacking return addresses for nested
subroutine calls and for temporary storage of register contents during the
normal course of executing the monitor program. Because of these monitor
requirements, the valid range of values for SP is a little less that the whole
range of RAM addresses. See $AA — Write_SP for more detail.

$E6 — FLASH Error This code indicates that an error occurred during an attempt to write or erase
FLASH memory. Possible errors that would trigger this error code are:

• An FACCERR (access error)

• An FPVIOL (protection violation error)

• An attempt was made to program a FLASH location that was not
previously erased

In cases where a single byte was being programmed or a single page was
being erased, the attempted FLASH operation would not be performed. In
cases where multiple bytes were being programmed or multiple pages were
being erased, this error indicates that at least one location or page erase
operation was not performed. This monitor does not provide more detailed
information about these errors. The debug tool or programmer running in the
host PC can perform additional memory reads to get more detailed information
about the error.

$E7 — Erase Range
Error

The FLASH memory in an HCS08 is organized into pages of 512 bytes each.
The starting address SADR and the ending address EADR for the Erase
command must specify a valid range of addresses in the FLASH memory or

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

12 Serial Monitor for MC9S08GB/GT MOTOROLA

this $E7 error will be generated and no FLASH locations will be erased. Refer
to $B5 — Erase for more information.

$E8 — Go or Trace1
with No Vectors

This code indicates that a Go or Trace1 command was attempted, but critical
interrupt vectors for SWI or SCI1 were not properly initialized in the unprotected
area of FLASH memory at $FBxx. If possible, the monitor will try to program
correct vectors into these locations. However, if the locations contained non-FF
values, programming is not possible to fix the vectors without erasing user
FLASH memory.

Monitor Status Codes

The second character of a 3-character prompt is a status code that tells the
host debug program the current state of the monitor.

$00 — Monitor
Active

This code indicates that the user’s application program is not currently running
and the monitor is active and waiting for further commands from the host.

$01 — User Program
Running

This code indicates that the user’s application program is currently running. In
this mode, the host may still issue commands to read or write memory locations
or halt the user program so the monitor regains control. However, the monitor
can only honor such command requests if/when the user program has cleared
the I bit in the CCR because these commands rely on an SCI1 receive interrupt
to gain the attention of the monitor program.

$02 — Halt This code indicates that a Halt command was executed to stop the running user
program. After the Halt command, the monitor remains active waiting for
additional commands.

$04 — Trace Done A Trace1 command was just executed and the monitor is active waiting for
additional commands.

$06 — Breakpoint An SWI was encountered and a Trace1 command was not the cause of the
SWI. Other possible causes of the SWI include a breakpoint or the end of a
debug run (both caused by the on-chip DBG module hardware).

$08 — Cold Reset This code indicates a cold reset has just occurred. The usual causes of cold
reset are a power-on event, a Reset command, or the user pressing the reset

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
Command Decode

MOTOROLA Serial Monitor for MC9S08GB/GT 13

button on the target system. A cold reset can also result if errors in a user
program cause code runaway. In the case of code runaway, an attempt to
execute an illegal opcode would generate a system reset.

$0C — Warm Reset This code indicates a warm reset has just occurred. The monitor makes a
distinction between a cold reset and a warm reset in order to allow faster
recovery when the reset is caused by a known event such as an SWI or SCI1
Rx interrupt where the stack pointer was out of range. A warm reset can also
be caused by an unexpected interrupt from the SCI1 Tx or error systems
whether the stack pointer is good or not. Although the stack pointer may be
valid, an error must have occurred because these interrupts should never occur
unless a user program disturbed the SCI1 control settings.

Command Decode

The code in lines 517 through 528 implements a simple lookup table to decode
monitor commands. The key to this routine is the command table which
consists of a 3-byte entrSy for each command. The first byte of each entry is
the command code such as $A1 for the Read_Byte command. The last two
bytes of each entry are the high and low halves of the address where the
command routine can be called. For example the 3-byte entry for the
Read_Byte command is $A1,$FC06 in lines 227 and 266. The $A1 is the
command code, and $FC06 is where the Read_Byte command routine
(RdByteCmd) is located. Lines 264 and 265 are the command table entries for
the Device_Info command. The label tableEnd in line 266 marks the end of the
command table. This structure makes it easy to add or remove commands.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

14 Serial Monitor for MC9S08GB/GT MOTOROLA

 227 FC06 A1 commandTbl: dc.b $A1
 228 FC07 FD7A dc.w RdByteCmd ;read byte
 229
 230 FC09 A2 dc.b $A2
 231 FC0A FDA2 dc.w WtByteCmd ;write byte
 " " " " " "
 264 FC3C B7 dc.b $B7
 265 FC3D FD27 dc.w DeviceCmd ;Return device information
 266 0000 FC3F tableEnd: equ * ;end of command table marker
 " " " " " " "
 517 FD5D AD 6C prompt1: bsr GetChar ;get command code character
 518 FD5F 45 FC06 ldhx #commandTbl ;point at first command entry
 519 FD62 F1 CmdLoop: cmp ,x ;does command match table entry?
 520 FD63 27 0B beq doIt ;branch if command found
 521 FD65 AF 03 aix #3 ;advance to next table entry
 522 FD67 65 FC3F cphx #tableEnd ;see if past end of table
 523 FD6A 26 F6 bne CmdLoop ;if not, try next entry
 524 FD6C A6 E1 lda #ErrCmnd ;code for unrecognized command
 525 FD6E 20 D8 bra Prompt ;back to prompt; command error
 526
 527 FD70 9ECE 01 doIt: ldhx 1,x ;get pointer to command routine
 528 FD73 FC jmp ,x ;go process command

Monitor versus Run Mode

The target MCU operates in either monitor active mode or run mode. Monitor
active mode refers to the mode of operation where the target MCU is executing
code within the monitor and keeps active control waiting for additional
commands through the serial interface. Run mode refers to the mode of
operation where the target MCU is executing the user’s application program.
Some monitor commands such as Read_Byte and Write_Byte can be executed
while the target MCU is in run mode. In this case, an SCI1 interrupt causes the
monitor to temporarily gain control to decode and execute the requested
command, but when the command is completed the monitor automatically
returns control to the user’s application program. Throughout such a sequence,
the target MCU is said to be in run mode even though software in the monitor
is executed to complete the requested command.

The Halt command causes an SCI1 interrupt which causes the CPU registers
(except H) to be pushed onto the stack. The ISR for SCI1 then sets the run
mode flag (even though this flag will be cleared again if the command that
caused the SCI1 interrupt turns out to be the Halt command). The H register is
pushed to complete the user register stack frame, and the monitor proceeds to
the command decode routine.

Breakpoints use the SWI interrupt mechanism (the Trace1 command also uses
a hardware breakpoint), which is not blocked when the I bit in the CCR is set.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
Intelligent Writes

MOTOROLA Serial Monitor for MC9S08GB/GT 15

This implies that Trace1 and breakpoints always work independent of what the
user program does to the I bit. Other commands use the SCI1 interrupt,
therefore these other commands cannot execute unless the user program
clears the I bit. There are some cases where it would be natural for a user
program to set the I bit (or leave it set) such as during reset initialization
routines and when the user program is executing an interrupt service routine.
Most such cases would only block interrupts for a very short period of time so
the user would not notice that a command request was delayed. If a user
program erroneously fails to clear the I bit or gets stuck in an interrupt service
routine, commands through the SCI serial link cannot be recognized. If this
condition persists, the user must force a reset or cycle the power to the target
system so it gets a power-on reset so the monitor can regain control.

Intelligent Writes

The intelligent write routine uses the address in H:X to decide what to do. If the
location is in FLASH, it checks to see if the location is already correct (if so it
skips the program operation and signals success). If the FLASH location is
different than desired, the routine checks to see if it is erased (it is considered
an error if you try to change a location in nonvolatile memory that is not blank).
If those checks pass, the routine does a byte program operation and finally
checks FACCERR and FPVIOL to make sure there was no access error or
protection violation during programming (it is considered an error if there was).
If the location is not FLASH, the routine writes the requested data to the
specified address. See WriteA2HX Subroutine and listing lines 1055–1088 for
more detail.

DoOnStack Subroutine

This unusual subroutine is used to program FLASH locations or perform
page-erase operations in the FLASH memory. Like most nonvolatile memories,
you cannot execute a program out of the FLASH while a program or erase
operation is being performed on the same nonvolatile memory. Because of this,
the DoOnStack subroutine (which is located in the FLASH), copies a small
routine onto the stack (in RAM) and then passes control to that subroutine on
the stack. When the operation is finished, an RTS returns control to the
DoOnStack routine which deallocates the space used by the small stack
routine and then returns to the program from where DoOnStack was called.

Prior to calling DoOnStack, the main program started a FLASH operation by
writing to FSTAT to clear out any previous error flags. Also, the A accumulator
is pre-loaded with the command code for Byte_Prog or Page_Erase.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

16 Serial Monitor for MC9S08GB/GT MOTOROLA

The first two lines in DoOnStack save H and X on the stack, and the third line
stores the command code on the stack. Lines 1140 through 1144 copy the
SpSub routine onto the stack (with a series of PSHA instructions) starting with
the last byte of SpSub and ending with the push of the first byte of SpSub onto
the stack. At this point SP points to the location just before the first byte of the
stacked SpSub routine. The TSX in line 1145 copies SP+1 into H:X so H:X
points at the copy of SpSub on the stack. While the monitor program is active,
the I bit in the CCR is set to mask interrupts. Since this routine can also be
called as a utility subroutine from a user program, the I bit may or may not be
set at the time DoOnStack is called. Lines 1146–1148 check to see if I is set or
clear. If the I bit was already set, lines 1154–1155 load the data for the
command and call the subroutine on the stack to complete the requested
FLASH operation. If the I bit was clear, line 1149 is used to set I before calling
the subroutine on the stack and line 1152 is used to restore it to 0 to re-enable
interrupts when the FLASH memory is back in the map.

Line 1150 or 1154 preloads A with the data for the FLASH operation. The JSR
in line 1151 or 1155 calls the copy of SpSub that is now located on the stack.
The SpSub subroutine was written in a position-independent manner so it could
be copied to a new location (on the stack) and would still execute as expected.
In this case, SpSub is such a short subroutine that it was easy to make it
position independent.

 1136 FF72 89 DoOnStack: pshx
 1137 FF73 8B pshh ;save pointer to flash
 1138 FF74 87 psha ;save command on stack
 1139 FF75 45 FFB0 ldhx #SpSubEnd ;point at last byte to move to stack
 1140 FF78 F6 SpMoveLoop: lda ,x ;read from flash
 1141 FF79 87 psha ;move onto stack
 1142 FF7A AF FF aix #-1 ;next byte to move
 1143 FF7C 65 FF98 cphx #SpSub-1 ;past end?
 1144 FF7F 26 F7 bne SpMoveLoop ;loop till whole sub on stack
 1145 FF81 95 tsx ;point to sub on stack
 1146 FF82 85 tpa ;move CCR to A for testing
 1147 FF83 A4 08 and #$08 ;check the I mask
 1148 FF85 26 09 bne I_set ;skip if I already set
 1149 FF87 9B sei ;block interrupts while FLASH busy
 1150 FF88 9ED6 001E lda SpSubSize+6,sp ;preload data for command
 1151 FF8C FD jsr ,x ;execute the sub on the stack
 1152 FF8D 9A cli ;ok to clear I mask now
 1153 FF8E 20 05 bra I_cont ;continue to stack de-allocation
 1154 FF90 9ED6 001E I_set: lda SpSubSize+6,sp ;preload data for command
 1155 FF94 FD jsr ,x ;execute the sub on the stack
 1156 FF95 A7 1B I_cont: ais #SpSubSize+3 ;deallocate sub body + H:X + command
 1157 ;H:X flash pointer OK from SpSub
 1158 FF97 48 lsla ;A=00 & Z=1 unless PVIOL or ACCERR
 1159 FF98 81 rts ;to flash where DoOnStack was called

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
DoOnStack Subroutine

MOTOROLA Serial Monitor for MC9S08GB/GT 17

Although SpSub appears to be located at $FF99–$FFB0, during execution we
actually execute a copy of SpSub that is temporarily located on the stack in
RAM. SpSub completes the FLASH command by performing the following
steps:

1. Write to a FLASH location. The data for this write was in A when SpSub
was started. The address was previously stored on the stack and is
loaded into H:X with a stack-pointer-relative LDHX instruction at line
1175.

2. Write the code for Byte_Prog or Page_Erase to the FCMD register. The
command code is also retrieved from the stack with a
stack-pointer-relative load instruction.

3. Write a 1 to FCBEF to initiate the command.

4. Wait for FCCF = 1 to indicate the operation is complete and the FLASH
is again visible in the normal memory map.

The NOP in line 1181 is used to ensure that there are at least four cycles
between the write to FCBEF (line 1180) and the first read of FSTAT (line 1182).
This delay is required so the internal FLASH command sequencer can properly
update the FCBEF and FCCF flags in FSTAT. Execution stays in the ChkDone
loop until the command finishes (FCCF becomes set). At this point the FLASH
is back in the memory map and we can return to DoOnStack (which is in the
FLASH).

 1175 FF99 9EFE 1C SpSub: ldhx <SpSubSize+4,sp ;get flash address from stack
 1176 FF9C F7 sta ,x ;write to flash; latch addr and data
 1177 FF9D 9ED6 001B lda SpSubSize+3,sp ;get flash command
 1178 FFA1 C7 1826 sta FCMD ;write the flash command
 1179 FFA4 A6 80 lda #mFCBEF ;mask to initiate command
 1180 FFA6 C7 1825 sta FSTAT ;[pwpp] register command
 1181 FFA9 9D nop ;[p] want min 4~ from w cycle to r
 1182 FFAA C6 1825 ChkDone: lda FSTAT ;[prpp] so FCCF is valid
 1183 FFAD 48 lsla ;FCCF now in MSB
 1184 FFAE 2A FA bpl ChkDone ;loop if FCCF = 0
 1185 FFB0 81 SpSubEnd: rts ;back into DoOnStack in flash
 1186 0000 0018 SpSubSize: equ (*-SpSub)

The RTS in line 1185 returns to DoOnStack at line 1152 or 1156. The AIS
instruction in line 1156 deallocates the stack space used by the SpSub
subroutine and temporary storage locations that resulted from pushes at lines
1136–1138 and leaves SP pointing at the return address to the main program.
The ASLA in line 1158 moves the FCCF flag, which was set, into the carry bit.
This leaves the FPVIOL and FACCERR flag bits in the two most significant bits
of A. A should be $00 unless there was a protection violation or an access error
as a result of the FLASH operation that was just performed. A simple BEQ or
BNE can be used to check for errors after returning to the main program.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

18 Serial Monitor for MC9S08GB/GT MOTOROLA

Vector Redirection

HCS08 devices support an optional hardware vector redirection mechanism
that can automatically redirect vectors (except reset) if a portion of the FLASH
memory is block protected. This monitor uses that mechanism rather than a
software pseudo-vector mechanism that is traditionally used in ROM monitors.
This monitor resides at $FC00–$FFFF, this 1-Kbyte block is protected, and the
nonvolatile FNORED bit is programmed to 0 to enable hardware vector
redirection. When an interrupt occurs, the vector is fetched from
$FBCC–$FBFD rather than from $FFCC–$FFFD, but all timing and
cycle-by-cycle activity is the same as when the vectors were not redirected.
This vector redirection mechanism configures the interrupt vectors so they
appear in unprotected space which in turn allows the user to control the
contents.

Because the vectors are in unprotected space, it is possible for a user to
intentionally or unintentionally erase the vectors for SWI and SCI1 that the
monitor needs to perform some operations. After power-on, reset, or while the
monitor is active, the I bit in the CCR is set, which prevents interrupts from
being recognized so the vectors are not needed at those times. Interrupts only
become critical when the monitor passes control to the user program through
a Go or Trace1 command. As part of the Go and Trace1 commands, the
monitor checks for valid SWI, SCI1, and ICG interrupt vectors. If the vectors are
erased, this routine attempts to correct them (reprogram them). If the vectors
have been erased and reprogrammed with incorrect information, the monitor
would not be able to regain control after exiting to the user program.
Consequently, the Go or Trace1 command is not executed and the prompt
sequence reflects the error.

The user routinely erases the unprotected FLASH memory in order to program
new application programs into it. This operation also erases the monitor’s SWI,
SCI1, and ICG vectors. When programming the application code into the
FLASH, leave SWI, SCI1_Rx, SCI1_Tx, SCI1_Error, and optionally the ICG
vectors unprogrammed ($FFFF). The first time you try to do a Go or Trace1
command, the monitor vectors will get programmed automatically to the correct
values.

If a third-party development tool wants to force these monitor locations to be
reprogrammed after an Erase_All command, it can set the user PC value to
$FC00 and execute a Trace1 command. The instruction at $FC00 is a jump
instruction to the start of the Prog1flash utility subroutine. The only negative
consequence of doing this is that the option to use a more sophisticated ISR
for the ICG would not be available.

The routine that checks for valid monitor vectors compares the vectors for
SCI1_Rx, SCI1_Tx, SCI1_Error, and SWI against the monitor values stored at

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
Stack Usage Details

MOTOROLA Serial Monitor for MC9S08GB/GT 19

$FFF4–$FFFD. In the special case of the ICG vector, this verification routine
only checks to make sure the ICG vector is not blank. If a user has already
programmed a vector for a user-supplied ICG ISR, this routine accepts that
vector. If the ICG vector location is unprogrammed ($FFFF), the verification
routine programs a default vector to a simple ISR in the monitor.

Stack Usage Details

Worst case stack usage by the monitor determines how much extra space a
user must allow below the application stack to support debugging with the
monitor. Typically, the functions for programming and erasing nonvolatile
memory are done before attempting to do any debugging on user programs.
Because of this, the amount of stack needed for these commands is generally
not important. The monitor was written to try to minimize the amount of stack
needed to support debugging.

During reset initialization, the stack pointer is set to the end of RAM ($107F in
the MC9S08GB60) and a 6-byte user register stack frame is set up with all 0s
except the user CCR which is initially set to $68 (I bit = 1) and the user PC
which is initially loaded with the user’s reset vector from $FBFE:FBFF. An
additional two bytes of stack are used while printing the prompt sequence. This
is a worst case stack depth of eight bytes before processing any commands.
While waiting for new commands, the stack is eight bytes deep — six bytes for
the user register stack frame and two bytes for the JSR to the GetChar routine.

When nonvolatile memory is not being programmed, monitor commands use
up to 17 bytes of stack space including the 6 bytes used for the user register
stack frame. If a Write_Byte or Write_Next command is used to program a
FLASH byte, 45 bytes of stack are used including the 6 bytes for the user
register stack frame. If a Write_Block command is used to program a FLASH
byte, 47 bytes of stack are used including the 6 bytes for the user register stack
frame.

The reset command does not use any extra stack except the six bytes for the
user register stack frame and the two bytes for JSR GetChar. The erase
commands use 50 bytes including the 6 bytes for the user register stack frame.

The bottom line for worst case stack usage is that an application should allot
50 bytes of extra stack space in their application programs to allow for
debugging with the monitor program. If no nonvolatile memory needs to be
programmed, only 17 bytes of extra stack space are needed. Failure to allow
for this extra space could result in the monitor overwriting other user resources
such as RAM variables or registers. For applications that cannot tolerate this
extra stack space, use a BDM-based debug pod which does not need any user
memory or I/O resources.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

20 Serial Monitor for MC9S08GB/GT MOTOROLA

The monitor checks the value of SP in the SWI service routine to make sure it
can support normal monitor activity. If SP is less than RamStart+$45 or greater
than RamLast, the monitor forces a warm reset to get the stack pointer back
into a legal range. If SP is outside this range, the stacking operation for the SWI
could have written over other system resources including program variables or
control and status registers.The lower limit (RamStart+$45) could have been
set at RamStart+50, but some guard band was allowed in case changes are
made to the monitor program some time in the future.

Tricks to Save Code Space

This section describes several techniques that were used to reduce code
space. Some of these techniques are good programming practices while others
should only be used as a last resort. This 1-Kbyte monitor is compact and is
usually used without modification so a few unusual tricks were used to make
the code fit within a 1-Kbyte protected block. Care was taken to document
these techniques to avoid future problems when this program is modified for
other HCS08 derivatives.

Utility Subroutines One of the most common ways to reduce code space is to develop a good set
of utility subroutines. A good utility subroutine is one that can be used in several
different contexts to perform some common task. A few obvious choices are
GetChar and PutChar routines to receive and send characters through the SCI
serial interface. Other utility routines that were used in this bootloader are
PCrLf, PrintCrLf, PrintMsg, and WriteA2HX.

Partition Common
Blocks of Code into
Subroutines

This technique is similar to the idea of making utility subroutines except that
these blocks of code are not as general purpose as something like the GetChar
routine. The usual way these sequences are detected is that a programmer will
notice they are doing something very similar in two or more places in a
program. When this happens, they can study the code and try to make a
subroutine out of the common parts of the sequence.

One example of this technique is the preInc subroutine which is used in the
Write_Next and Read_Next commands. In both of these commands, the user’s
H:X register must be retrieved from the user register stack frame, get
incremented by one, and be updated in the user register stack frame. The
incremented H:X value must be in the H:X register to perform the requested
read or write operation. The common subroutine saved 10 bytes of code space
compared to doing a 5-line in-line sequence twice.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
User-Accessible Utility Subroutines

MOTOROLA Serial Monitor for MC9S08GB/GT 21

Other examples of this technique in the monitor include DoOnStack, and
WriteA2HX. These routines are discussed in more detail elsewhere in this
application note.

WriteA2HX
Subroutine

The WriteA2HX subroutine saves code space similar to the way other
subroutines save space, but there is another, more important result from
combining this function into a subroutine. The Write_Byte command, the
Write_Next command, and the Write_Block command all change the contents
of memory locations. By building this function into a subroutine, it was possible
to make the operation smart so that it could use the address to intelligently
decide whether to program FLASH memory or simply write the data to the
requested RAM or register location. The routine also performs error checks to
detect improper attempts to program nonvolatile locations.

The resulting routine ensures that FLASH programming will be performed in
exactly the same way no matter which monitor command is responsible for the
change. This helps improve code reliability and reduces the amount of testing
for the final program. If a change is needed for the nonvolatile programming
algorithm, it can be changed in this one routine rather than having to locate
three different places to correct the program.

User-Accessible Utility Subroutines

This monitor includes two user-accessible utility subroutines that can be called
through a jump table. The jump table is located in the first 6 bytes of the 1-Kbyte
protected monitor memory. The jump table provides a way to call these routines
at a predictable address that doesn’t change even if the monitor program is
changed so that the actual subroutines are located at different addresses. For
example, when a user program executes a JSR to uPrg1Flash (at $FC00), the
JMP instruction at $FC00 passes control to the actual Prg1Flash subroutine
wherever it happens to be located in the 1-Kbyte monitor program.

The two utility routines are:

uPrg1Flash($FC00) — Writes the value in accumulator A to the address
pointed to by H:X. If the Z condition code is set (.EQ.) after returning from this
subroutine, it indicates the operation was successful. If Z is clear (.NE.), it
indicates an FACCERR or FPVIOL error was detected during an attempted
FLASH programming operation, or the FLASH location that was being written
had some bits already programmed before the programming operation was
attempted.

uErasePages ($FC03) — Erases one or more 512-byte pages of FLASH
memory. Before calling this subroutine, push the end address onto the stack
and load H:X with the start address for the range of locations you want to erase.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

22 Serial Monitor for MC9S08GB/GT MOTOROLA

If the operation is successful, the Z bit is set on return from this subroutine. If
the range of addresses is not within the unprotected portion of the FLASH, or
if there is an FACCERR or FPVIOL error during the erase operation, the Z bit
will be cleared on return.

For additional information about the detailed operation of the utility subroutines,
refer to the complete listing for the monitor program.

Modifications for Clock Speed and Memory Map Variations

This section describes the changes that would be needed to adapt this monitor
to another MC9S08GB60 system that uses a different frequency source such
as a 4-MHz crystal. For other HCS08 devices, refer to the specific data sheet
for detail about where to make similar changes. There are several
frequency-related dividers that would need to be adjusted. In the most extreme
case, this monitor may be adapted to some new HCS08 derivative that has a
different type of clock generator module. In the case of a different clock
generator, you would need to change the initialization code in lines 402 through
408. Most other changes can be made by simply adjusting some of the
initialization constants at the top of the program.

Setting Bus
Frequency

The first change for a different frequency source would be to adjust the settings
in initICGC1 and initICGC2. Refer to the device data sheet for detailed
information about how these registers should be set up.

ICGC1 includes settings for:

• RANGE selects the crystal frequency range (for example, low range for
32-kHz crystals or internal self-clocked frequency source and high range
for a 4-MHz crystal)

• Setting REFS to 1 enables the crystal oscillator amplifier if a crystal will
be used; REFS can be set to 0 if the internal self-clocked reference will
be used.

• The CLKS1:CLKS0 bits select the FLL operating mode which should be
FEE for a crystal or FEI for the internal self-clocked oscillator. If the
internal self-clocked frequency source is used, you should also adjust
the trim in the ICGTRM register to establish a relatively accurate
243-kHz frequency source.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
Modifications for Clock Speed and Memory Map Variations

MOTOROLA Serial Monitor for MC9S08GB/GT 23

ICGC2 is used to set the FLL dividers to multiply the source frequency to get
the ICGOUT frequency, which is 2x the bus frequency. The MFD control field
sets a multiplier factor N. The RFD field sets a post FLL divider. When the
internal self-clocked frequency source is used, the source frequency for these
calculations is (243 kHz / 7). The overall relationship between source frequency
and bus frequency is:

• For a low frequency crystal source such as 32.768 kHz (RANGE = 0,
REFS = 1, CLKS = 1:1 in ICGC1)
For this monitor set ICGC1 = %00111000

Source_Frequency * 64 * (N / 2R) = Bus_Frequency

ex. 32.768 kHz * 64 * (18 / 2) = 18.874368 MHz where...
N = 18 (MFD = 1:1:1) and R = 1 (RFD = 0:0:0)
For this monitor set ICGC2 = %01110000

• For the internal self-clocked frequency source (RANGE = REFS = 0,
CLKS = 0:1 in ICGC1)
For this monitor set ICGC1 = %00001000

Source_Frequency * 64 * (N / 2R) = Bus_Frequency

ex. (243 kHz / 7) * 64 * (18 / 2) = 19.995427 MHz where...
N = 18 (MFD = 1:1:1) and R = 1 (RFD = 0:0:0)
For this monitor set ICGC2 = %01110000

• For a high frequency crystal source such as 4 MHz (RANGE = 1,
REFS = 1, CLKS = 1:1 in ICGC1)
For this monitor set ICGC1 = %01111000

Source_Frequency * 1 * (N / 2R) = Bus_Frequency

ex. 4 MHz * 1 * (10 / 2) = 20 MHz where...
N = 10 (MFD = 0:1:1) and R = 1 (RFD = 0:0:0)
For this monitor set ICGC2 = %00110000

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

24 Serial Monitor for MC9S08GB/GT MOTOROLA

Setting Up SCI Baud
Rate

SCI baud rates are derived by dividing the bus frequency, so if the bus
frequency changes, the divider for the baud rate generator must change. This
monitor uses 115.2 kbaud (for the MC9S08GB60). Some other variations of
this monitor for HCS08 devices that operate from a slower clock source may
use slower baud rates. For reliable SCI communications, the baud rate must be
within about ± 4.5% of the ideal rate. A modulo divider is controlled by the SBR
(SBR12..SBR0) setting in the SCI1BDH and SCI1BDL registers. Since this
program does not use any divisor that is greater than 8 bits, the SCI1BDH
register can be left at its default $00 value and all baud rate adjustment will be
done using the SCI1BDL register. When SBR = 0, the baud rate generator is
off.

The formula for computing baud rate from bus frequency is

Baud_Rate = Bus_Frequency / (SBR * 16)

The following table summarizes the bus frequency, SBR settings, and
frequency tolerance for 9600 baud and 115.2 kbaud for this monitor assuming
a 32.768 kHz crystal, a 4 MHz crystal, or the internal self-clocked frequency
source. Bus frequency values assume the FLL settings shown in Setting Bus
Frequency.

Setting longBreak
Constant

This monitor sends a break to the host PC to get its attention when the target
system is powered up. Because some Windows-based PCs need a long period
of break to detect the condition, this monitor sends a break that is about
30 bit-times at the selected baud rate. This time delay is not critical, but it
should be at least 30 bit-times.

The monitor generates this break delay time by executing a software loop that
is eight bus cycles long. The number of times this loop is executed is set by the

Table 1. Baud Rate Setup

Frequency
Source

Bus
Frequency

(MHz)
SBR Baud Rate

(Baud)
Frequency
Tolerance

32.768 kHz 18.874368 123 9600 –0.1%

32.768 kHz 18.874368 10 115.2 k +2.4%

4 MHz 20 130 9600 +1.6%

4 MHz 20 11 115.2 k +1.36%

(internal) 19.995427 129 9600 +0.9%

(internal) 19.995427 11 115.2 k +1.4%

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
Modifications for Clock Speed and Memory Map Variations

MOTOROLA Serial Monitor for MC9S08GB/GT 25

value in longBreak. One bit-time is equal to 16 times the baud rate constant. To
get the number of loops to execute for 32 bit-times (for example), you would
take (the baud rate constant) * 16 * 32 / 8. To compute the value for longBreak
to get a 30 to 32 bit-time break, multiply the baud rate constant first by 60 and
then 64, and then choose a convenient number between these two values.

For a 32.768 kHz-based system with bus speed 18.874368 MHz, longBreak is
set to 625. For a 4 MHz-based system with bus speed 20 MHz, longBreak is
set to 700. In a system that uses the internal frequency source and a bus speed
of 19.995427 MHz, set longBreak to 700.

FLASH System
Clock Speed

The FLASH memory system uses an internal state machine to execute
programming and erase commands. The timing of these commands is
determined by the speed of a clock in the FLASH module and this clock must
be between 150 kHz and 200 kHz for proper operation. The FLASH clock
(FCLK) speed is

Bus_Frequency / (8 * (FCDIV + 1)) = FCLK

Memory Map
Changes

Most changes to the memory map from one HCS08 derivative to another will
be taken into account automatically by replacing the 9S08GB60_v1.equ file
with the equate file for the appropriate derivative MCU. This file specifies the
start and end address locations for the RAM and FLASH memory and for all
status and control registers. You may wish to change the port pins for the
switch that forces monitor versus user mode (PTA7 in the initial version for the
MC9S08GB60), and for the SCI RxD pin. These changes can be made by
modifying the equate directives at the beginning of the monitor program.

Table 2. FCDIV Settings

Frequency Source Bus Frequency FCDIV FCLK

32.768 kHz 18.874368 MHz 11 196.608 kHz

4 MHz 20 MHz 12 192.308 kHz

(internal) 19.995427 MHz 12 192.264 kHz

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D

26 Serial Monitor for MC9S08GB/GT MOTOROLA

Conclusion

This application note has described a 1-Kbyte serial monitor program. In
addition to functioning as a debug monitor program, the serial monitor program
serves as a good programming example for the HCS08 Family of
microcontrollers and demonstrates a number of useful programming
techniques.

Routines for erasing and programming nonvolatile FLASH memory are
described in detail. The unusual DoOnStack subroutine copies a routine onto
the stack and executes it there since it is not possible to program or erase the
FLASH memory from code executing within the same FLASH. This routine can
easily be adapted for use in other user programs. The WriteA2HX subroutine
decides whether to use FLASH or simple RAM write operations, depending on
the address of the location to be programmed.

The reset initialization routines show how to setup the FLL and SCI
subsystems. A technique for differentiating between a warm reset compared to
a cold reset is also described.

A set of 19 primitive monitor commands support third-party FLASH
programming and debug tools. This monitor allows for debugging through an
on-chip SCI serial interface instead of using a more expensive background
debug interface pod.

Vector redirection through a new hardware mechanism is described, and
techniques to reduce code size are discussed.

Code Listing

Two zip files accompany this application note, AN2140SW1.zip and
AN2140SW2.zip. AN2140SW1.zip contains just the assembly files for both the
32-kHz crystal and 4-MHz crystal versions of the serial monitor program along
with the necessary equate file. This zip file does not contain compiled versions
of the programs.

AN2140SW2.zip contains two complete project folders, one for each version of
the serial monitor program. These project directories are for use with
MetroWerks CodeWarrior for CW08_V3.0. The folders are named
“32k_9S08GB60_Monitor” and “4m_9S08GB60_Monitor.” Inside the first level
of each project folder is a CodeWarrior project file with a “.mcp” filename
extension. Double clicking these files will open the project if CodeWarrior has
been installed. Each project has been assembled and listings (“.lst” file
extension) are available in the “bin” subfolders. Also, the s records (“.s19” file
extension) are available in the same folder.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

AN2140/D
Code Listing

MOTOROLA Serial Monitor for MC9S08GB/GT 27

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

HOME PAGE:
http://motorola.com/semiconductors

AN2140/D
Rev. 1
6/2003

Information in this document is provided solely to enable system and software implementers to use Motorola products.
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even
if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2003

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

