
FDC 9239/9239B 9239T/9239BT **PRELIMINARY**

ENHANCED FLOPPY DISK INTERFACE CIRCUIT

FEATURES

- ☐ Digital Data Separator Performs complete data separation function for floppy disk drives Separates FM and MFM encoded data No critical adjustments necessary 31/2", 51/4" and 8" compatible
- ☐ Variable Write Precompensation
- ☐ Internal Crystal Oscillator Circuit
- ☐ Track-Selectable Write Precompensation
- ☐ Retriggerable Head-Load Timer
- ☐ Fully compatible with FDC 179X, FDC 765A and FDC 7265
- ☐ 16-Bit Cell Divide Algorithm Improves Performance
- ☐ Fabricated in Low Power CMOS
- ☐ Single + 5 Volt Supply
- ☐ TTL Compatible; Fully Compatible with the FDC 9229

PIN CONFIGURATION

FUNCTIONAL DESCRIPTION

The FDC 9239 is a CMOS integrated circuit designed to complement either the 179X or 765 (8272) type of floppy disk controller chip. It incorporates a digital data separator, write precompensation logic, and a head-load timer in one 0.3-inch wide 20-pin package. A single pin will configure the chip to work with either the 179X or 765 type of controller. The FDC 9239 provides a number of different dynamically selected precompensation values so that different values may be used when writing to the inner and outer tracks of the floppy disk drive. The FDC 9239 operates from a + 5V supply.

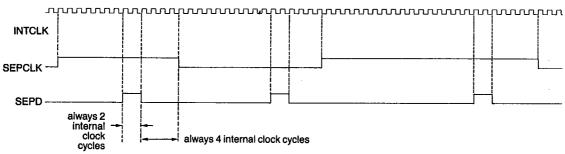
The FDC 9239 is available in four versions: the FDC 9239/ T which is intended for 51/4" drives and the FDC 9239B/T for 31/2", 51/4" and 8" drives. (The /T versions require a TTL

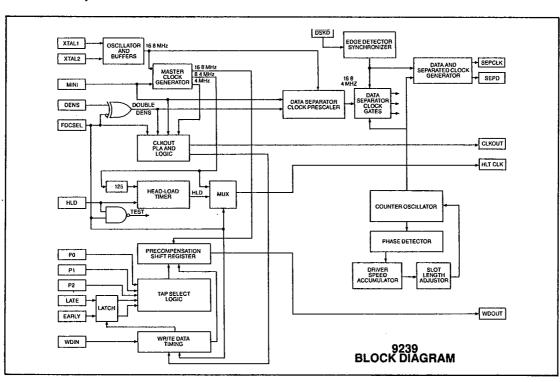
DESCRIPTION OF PIN FUNCTIONS

PIN NO.	SYMBOL	I/O	DESCRIPTION			
1	DSKD	1	This input is the raw read data received from the drive. (This input is active low.)			
2	FDCSEL	ļ	This input signal, when low, programs the FDC 9239 for a 179X type of LSI controller. When FDCSEL is high, the FDC 9239 is programmed for a 765 (8272) or 7265 floppy disk controller. (See fig. 4.)			
3	MINI	_	The state of this input determines whether the FDC 9239 is configured to support 8" or 51/4" floppy disk drive interfaces. It is used in conjunction with the DENS input to prescale the clock for the data separator. The state of this input also alters the CLKOUT frequency, the precompensation value, the head load delay time (when in 179X mode) and the HLT/CLK frequency (when in 765 mode). See figs. 2, 3, and 4.)			
4	DENS	ı	The state of this input determines whether the FDC 9239 is configured to support single density (FM) or double density (MFM) floppy disk drive interfaces. It is used in conjunction with the MINI input to prescale the clock for the data separator. The state of this input also alters the CLKOUT frequency when in the 765 mode. (See figs. 2, 3, and 4.)			
5	SEPCLK	0	A square-wave window clock signal output derived from the DSKD input.			
6	SEPD	0	This output is the regenerated data pulse derived from the raw data input (DSKD). This signal may be either active low or active high as determined by FDCSEL (pin 2).			
7	WDOUT	0	The precompensated WRITE DATA stream to the drive.			
8	HLT/CLK	0	When in the 765 mode (FDCSEL high), this output is the master clock to the floppy disk controller. When in the 179X mode, this signal goes high after the head load delay has occured following the HLD input going high This output is retriggerable. (See fig. 3.)			
9	CLKOUT	0	This signal is the write clock to the floppy disk controller. Its frequency is determined by the state of the MINI, DENS and FDCSEL input pins. (See fig. 3.)			
10	GND		Ground			
11	XTAL 1/CLKIN	I	This input is for direct connection to a 16 MHz or 8 MHz single-phase TTL-level clock, or one lead from an 8 MHz or 16 MHz crystal.			
12	WDIN	Ī	The write data stream from the floppy disk controller.			
13	EARLY	1	When this input is high, the current WRITE DATA pulse will be written early to the disk.			
14	LATE	l	When this input is high, the current WRITE DATA pulse will be written late to the disk. When both EARLY and LATE are low, the current WRITE DATA pulse will be written at the nominal position.			
15	HLD	1	This input is only used in 179X mode. A high level at this input causes a high level on the HLT/CLK output after the specified head-load time delay has elapsed. The delay is selected by the state MINI output. (See fig. 3.) In 765 mode this pin should be grounded.			
16	XTAL 2	l	The second lead from an 8 MHz or 16 MHz crystal is connected to this pin. In those applications, using a TTL clock, this pin should be left floating.			
17	P0	I	TO Do called the amount of procomponentian applied to the write data			
18	P1	!	P2-P0 select the amount of precompensation applied to the write data. (See fig. 2.)			
19	P2					
20	Vcc	1	+5 VOLT SUPPLY			

OPERATION

Data Separator


The CLKIN input clock is internally divided by the FDC 9239 to provide an internal clock. The division ratio is selected by the FDCSEL, MINI and DENS inputs depending on the type of drive used. (See fig. 1.)


The FDC 9239 detects the leading (negative) edges of the disk data pulses and adjusts the phase of the internal clock to provide the SEPCLK output.

Separate short- and long-term timing correctors assure accurate clock separation.

The SEPCLK frequency is nominally ½2 the internal clock frequency. Depending on the internal timing correction, the duration of any SEPCLK half-cycle may vary from a nominal of 16 to a minimum of 12 and a maximum of 21 internal clock cycles.

in	NPUTS		DIVISOR		
FDCSEL	DENS	MINI	f(CLKIN)/f(INTCLK)		
0	0	0	1		
0	0	1	2		
0	1	0	2		
0	1	1	4		
1	0	0	2		
1	0	1	4		
1	1	0	1		
1	1	ĺ	2		

OPERATION (CONT'D)

Precompensation

The desired precompensation delay is determined by the state of the P0, P1 and P2 inputs of the FDC 9239 as per fig. 2. Logic levels present on these pins may be changed dynamically as long as the inputs are stable during the time the floppy disk controller is writing to the drive and the inputs meet the minimum setup time with respect to the write data from the floppy disk controller.

Head Load Timer

The head load time delay is either 40 ms or 80 ms, depending on the state of MINI. (See fig. 3.) The purpose of this delay is to ensure that the head has enough time to engage properly. The head load timer is only used in the 179X mode; it is non-functional in the 765 or 7265 mode.

The FDC 179X initiates the loading of the floppy disk drive head by setting HLD high. The controller then waits the programmed amount of time until the HLT signal from the FDC 9239 goes high before starting a read or write operation.

MINI	P2	P1	P0	PRECOMP VALUE
0	0	0	0	0 ns
ŏ	ō	Õ	1	62.5 ns
ō	0	1	0	125 ns
Ö	0	1	1	187.5 ns
Ŏ	1	0	0	250 ns
Ō	1	0	1	250 ns
ĺ	0	0	0	0 ns
1	0	0	1	125 ns
1	0	1	0	250 ns
1	0	1	1	375 ns
1	1	0	0	500 ns
i	1	0	1	500 ns
1	1	1	0	625 ns
1	1	1	1	625 ns

NOTE: All values shown are obtained with a 16 MHz reference clock. Multiply pre-comp values by two for 8 MHz

FIG. 2 WRITE PRECOMPENSATION VALUE SELECTION

H	NPUTS		OUT	PUTS			CONTROLLED
FDCSEL	DENS	MINI	CLKOUT	HLT/CLK	16 MHZ INPUT CLOCK	8 MHZ INPUT CLOCK	CONTROLLER
0	0	0	2 MHz 1 MHz	40 ms* 80 ms*	8" Double Density 51/4" Double Density	51/4" Double Density Not Permitted	179X 179X 179X
0	1 1	0 1	2 MHz 1 MHz	40 ms* 80 ms*	8" Single Density 51⁄4" Single Density	51/4" Single Density Not Permitted	179X 179X
1 1 1	0 0 1	0 1 0	500 KHz 250 KHz 1 MHz	8 MHz 4 MHz 8 MHz 4 MHz	8" Single Density 51/4" Single Density 8" Double Density 51/4" Double Density	51/4" Single Density Not Permitted 51/4" Double Density Not Permitted	765 (8272) 765 (8272) 765 (8272) 765 (8272)

NOTE: 31/2" drive users should consult drive specifications to determine if drive data rate equals 5.25" or 8" standards.

*NOTE: All values shown are obtained with a 16 MHz reference clock. Divide all frequencies and multiply all periods by two for 8 MHz operation.

FIG. 3 CLOCK/HEAD LOAD TIME DELAY AND FLOPPY DISK DRIVE/CONTROLLER SELECTION

MAXIMUM GUARANTEED RATINGS*

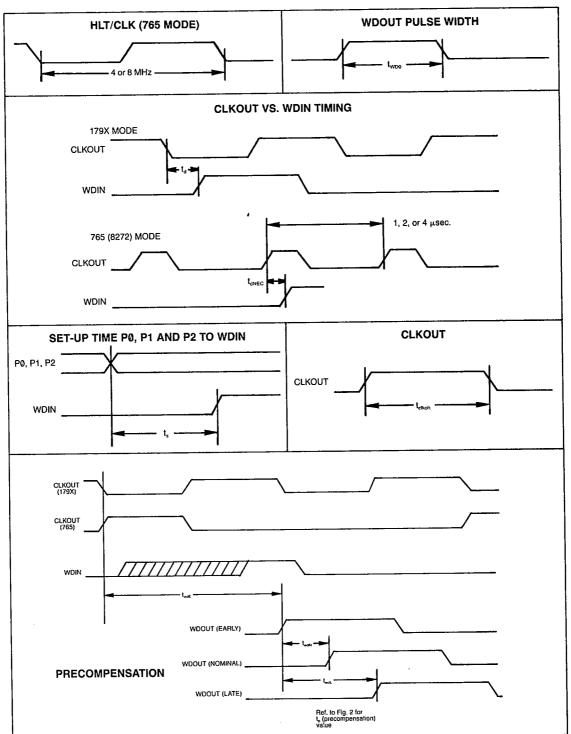
Operating Temperature Range
Storage remperature Hande
Lead Telliperature (Soldering, 10 Sec.)
FUSITIVE VUITAGE OF ATIV I/O PID. WITH TESPECT TO ATOLINA
negative voltage on any I/O Pin, with respect to ground
Power Dissipation

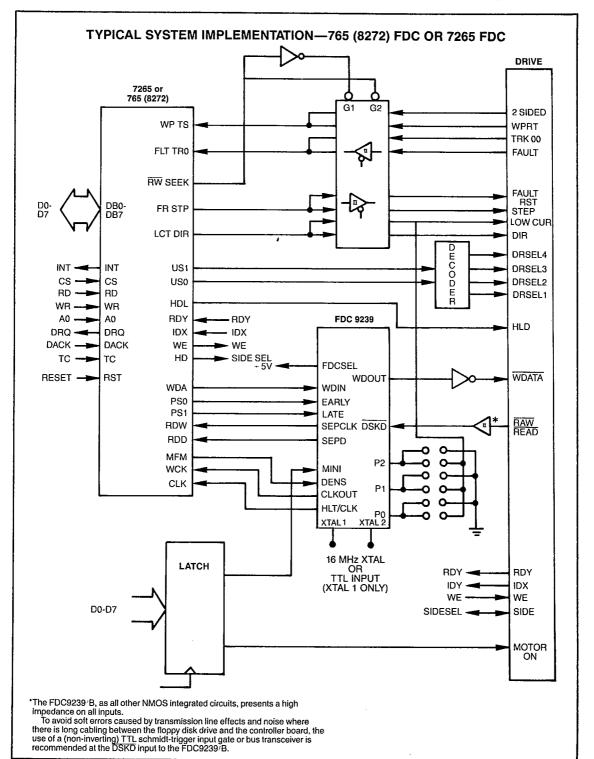
^{*}Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

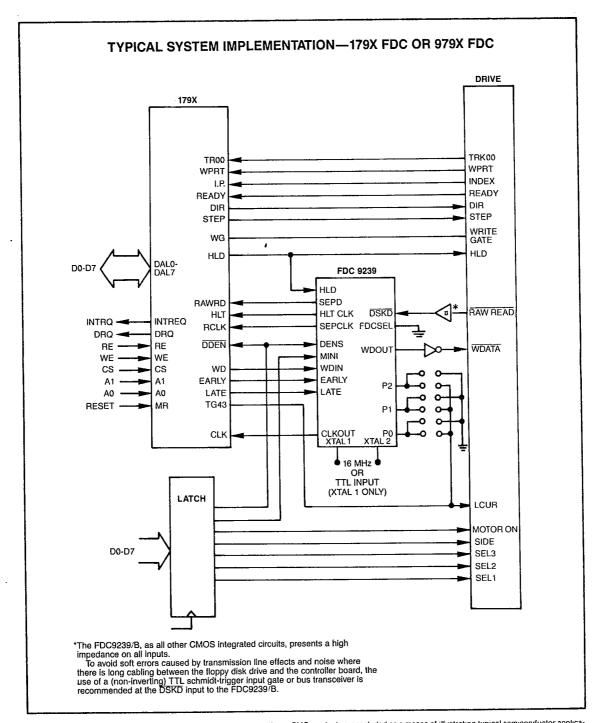
NOTE: When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes or "glitches" on their outputs when the AC power is switched on and off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used.

ELECTRICAL CHARACTERISTICS ($T_A = 0^{\circ}\text{C to }70^{\circ}\text{C}, V_{cc} = 5\text{V} \pm 5\%$)

PARAMETER	MIN	TYP	MAX	UNIT	Some parametric finite are subject to
DC CHARACTERISTICS	177114	117	MAX	UNII	Some parametric limits are subject to
INPUT VOLTAGE]		1
Low Level V _n	-0.3	1	0.8	l v	Except CLKIN
High Level V _{IH}	2.0	İ	(V _{cc})	Ιv	Except CERIN
XTAL/CLKIN INPUT VOLTAGE			1 - 667		
Low (V _{II})	-0.3	ĺ	1.5	V	ĺ
High (V _{i⊬})	3.2		(V _{cc})	ľ	
OUTPUT VOLTAGE			1-007		
Low Level Vol	Ì		0.4	٧	I _{oL} = 1.6 mA except HLT/CLK
			•	•	$I_{OL} = 0.4 \text{ mA, HLT/CLK only}$
High Level V _{oH}	2.4			٧	I _{OH} = -100 μA except HLT/Ci I _{OH} = -400 μA, HLT/CLK only
POWER SUPPLY CURRENT					On the party of the control of the c
l _{cc}	ļ		20	mA	
INPUT LEAKAGE CURRENT					
l _{ic}			10	μΑ	$V_{PN} = 0 \text{ to } V_{CC}$
INPUT CAPACITANCE					
C _{IN}		TBD		pF pF	Except CLKIN CLKIN only


ELECTRICAL CHARACTERISTICS ($T_A = 0$ °C to 70°C, $V_{cc} = 5V \pm 5\%$)


CTRICAL CHARACTERISTICS	$(T_A = 0^{\circ}C \text{ to } 70^{\circ}C$, V _{cc} = 5V ±	:5%)	Some parameter that years of the state of th	
PARAMETER	MIN	TYP	MAX	UNIT	CONDITIONS The line of a line of the line
AC ELECTRICAL CHARACTERISTICS	(A	l times assur	ne XTAL/CLI	KIN = 16 M	Some Parameter for the second of the second
CLKIN frequency	3.95	16	16.2	MHz	FDC 9239B
	3.95	8	8.1	MHz	FDC 9239
CLKIN DUTY CYCLE	40		60	%	
t _{cikoh}	465	500	515	ns	FDCSEL = low; MINI = high
	215	250	265	ns	FDCSEL = low: MINI = low
	90	125	140	ns	FDCSEL = high
t _{wdo}	150	312.5	350	ns	Time Doubles with MINI-1
t _a	50		400	l ns	
MINEC	0	ľ	400	ns	
wdE	500	562.5		ns	9 clock times ± 1 clock time
t _{wdN}	1	precom	p value		See fig. 2
t _{wal.}		2 x preco	mp value		See fig. 2
t	1.0		·	μS	



T-52-33-11

AC TIMING CHARACTERISTICS

Circuit diagrams utilizing SMC products are included as a means of illustrating typical semiconductor applica-tions: consequently complete information sufficient for construction purposes is not necessarily given. The information has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the semiconductor devices described any license under the patent rights of SMC or others. SMC reserves the right to make changes at any time in order to improve design and supply the best product possible.