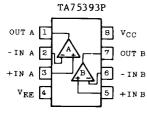

TA75393AP

VOLTAGE COMPARATOR

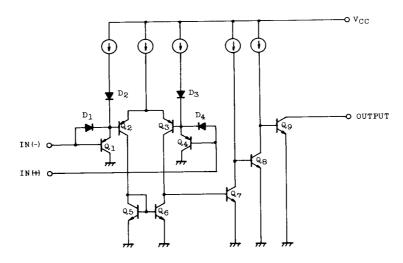
The TA75393AP consists of two independent voltage comparators with an output sink current specification as low as 60mA Min for both comparators.


These were designed to operate from a single power supply over a wide range of voltage. Normal operation from dual supplies is also to be guaranteed on voltage range from 2V to 36V. VCC is necessary at least 1.5 volts more than the input common mode voltage.

The output can be connected to other open collector outputs to achieve Wired-OR relationship and it can drive

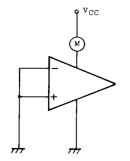
PIN CONNECTION (TOP VIEW)

relays or lamps.

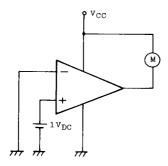

MAXIMUM RATINGS (Ta=25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	v _{cc}	±18~36	V	
Differential Input Voltage	DVIN	±30	v	
Common Mode Input Voltage	CMVIN	-0.3~V _{CC}	v	
Power Dissipation	PD	500	mW	
Operating Temperature	Topr	-40~85	°C	
Storage Temperature	Tstg	stg -55~125		

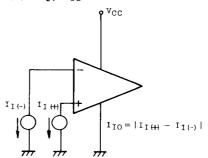
ELECTRICAL CHARACTERISTICS (V_{CC}=5V, Ta=25°C)

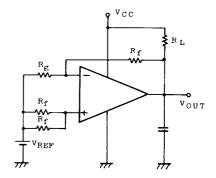

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	VIO	4	-	-	2	7	mV
Input Bias Current	II	2	-	- '	25	250	nA
Input Offset Current	110	2	_	-	5	70	nA
Common Mode Input Voltage	CMVIN	4	_	0	-	V _{CC} -1.5	V
Voltage Gain	GV	_	$R_L=15k\Omega$	-	200	-	V/mV
Supply Current	I _{CC}	1	No load	_	5.5	8.0	mA
Sink Current	Isink	5	IN(+)=0V, IN(-)=1V VOL=1.5V	65	100	-	mΑ
Output Voltage ("L" Level)	V _{OL}	5	IN(+)=0V, IN(-)=1V Isink=60mA	-	0.2	0.4	v
Output Leak Current	ILEAK	3	IN(+)=1V, IN(-)=0V $V_0=5V$	-	0.1	_	nA
Response Time	trsp	6	$R_L=82\Omega$, $C_L=15pF$		1.3		μs

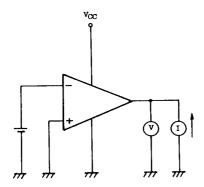
EQUIVALENT CIRCUIT

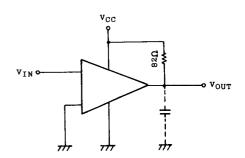


TEST CIRCUIT


(1) I_{CC}


(3) I_{LEAK}


(2) I_I, I_{IO}


(4) v_{IO} , cmv_{IN}

(5) Isink, VOL

