

CATALOG : HSM D.C. SERVO MOTORS

catalogue record : 3

SERVO MOTOR HSM 150

DESCRIPTION

External contour servo-motor is cylindrical. We recommend that a sensor (tachodynamo, position pickup) should be mounted on the servomotor shaft on the commutator side and to connect the load to the other side of the shaft. Servo-motor electrically incorporates by the help of pinned connector.

The head produced by electrical and mechanical losses during servo motor operation is removed from Type HSM 150 C by means of cooling air which is supplied to the servo motor from the fan through dia. 36 mm flexible hose connected to the air distributor sleeve local on the rear shield of the servo motor. The cooling air is delivered to three dia. 16 mm input holes through which it enters radially into the inner space of the servo motor. The cooling air is further directed by means of a special insert along the surface of the rotor to remove head from it. The warm air gets out axially through four dia. 21 mm holes located on the front shield of the servo motor.

PERFORMANCE DATA

Rated parameters	Measure ment Unit	HSM 150	HSM 150 C
Voltage U _N	V	24	
Torque M _N	Nm	≥ 0,39	≥ 0,52
Speed n _N	min ⁻¹	~ 3650	~ 3300
Current I _N	А	~ 8,5	~ 11
Power output P _N	W	≥ 140	≥ 180
Efficiency	%	≥ 70	
Cooling air pressure	Ра		~ 80

Other parameters	Measure ment Unit	HSM 150
Operating supply voltage	V	$U_N \pm 50\%$
No-load speed	min ⁻¹	~ 4600
Maximum speed	min ⁻¹	7000 (at 36V)
Max. torque (at U _N)	Nm	≥ 2,2
Max. peak current	A	40 (at 24V)
Rotor moment of inertia	kgm ²	\leq 130.10 ⁻⁷
Electrical time constant	μs	≤ 140
Electromechanical time constant	ms	≤ 2,9
Total resistance at 20 ^o C	Ω	≤ 0,7
No-load current	A	≤ 0,8
No-load losses	W	≤ 24
Inductance	μH	≤ 90
Speed constant	rad/V.s	20 ^{+1,16} -1,02
Moment of static friction	Nm	≤ 0,016
Max. angular acceleration	rad/s ²	≥ 169 000
Power output rise factor	kW/s ²	≥ 372
Natural mechanical resonance	Hz	≥ 1700
Temperature of rotor	°C	≤ 130
Temperature of stator shell	°C	~ 70
Thermal resistance between stator and rotor	°C/W	≤ 0,7
Thermal resistance between stator and environment	°C/W	≤ 0,6

Life expectancy Enclosure Weight

DIMENSIONAL DRAWING HSM 150 WITH TAPERED SHAFT

Detail B Detail B Length 5

*) radial run-out measured in the middle of projecting parts of the shaft

****)** perpendicularity measured at radius R-30

 *) radial run-out measured in the middle of projecting parts of the shaft

Detail B Length 5

*) radial run-out measured in the middle of projecting parts of the shaft

**) perpendicularity measured at radius R-30

WORKING CONDITIONS

: +5 ℃ to +35 ℃
: max. 80%
: 90 to 110 kPa
: continuous
: arbitrary, but preferably horizontal
: dust-free, without harmful effects

TABLE OF VERSIONS

360-90001-0	HSM 150	with tapered shaft
360-90002-0	HSM 150	with cylindrical shaft
360-90003-0	HSM 150 C	(force cooled) with tapered shaft
360-90004-0	HSM 150 C	(force cooled) with cylindrical shaft

PERFORMANCE CHARACTERISTICS

performance characteristics HSM 150

Hatched surface denotes operation with forced cooling only.

performance characteristics HSM 150 (force cooled)

Continuous development may necessitate changes in details without notice.